Nutritional Analysis Using Convolutional Neural Network for Type II Diabetes

Nada Hesham Ahmed Elsherbeny, Abdelrahman Zaian, E. Supriyanto
{"title":"Nutritional Analysis Using Convolutional Neural Network for Type II Diabetes","authors":"Nada Hesham Ahmed Elsherbeny, Abdelrahman Zaian, E. Supriyanto","doi":"10.1109/ICHE55634.2022.10179874","DOIUrl":null,"url":null,"abstract":"The most prevalent disease is type 2 diabetes mellitus (T2DM), a chronic metabolic disorder. T2DM is linked to fat buildup in the lower torso around the abdomen, which leads to fat buildup in the belly region. As a result, it’s important to categorize and forecast diabetes patients based on their dietary intake. In this study, we used the pre-trained Inception V3, Keras, and Tensorflow convolutional neural network (CNN) model to identify different food categories. Comparing the CNN model’s accuracy to other methods from earlier studies, it achieved 96.6%, which is fairly high. Additionally, there is a correlation between calories with fat, carbs, protein, and sugar related with T2DM via linear regression between nutrition classes.","PeriodicalId":289905,"journal":{"name":"2022 International Conference on Healthcare Engineering (ICHE)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Healthcare Engineering (ICHE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHE55634.2022.10179874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The most prevalent disease is type 2 diabetes mellitus (T2DM), a chronic metabolic disorder. T2DM is linked to fat buildup in the lower torso around the abdomen, which leads to fat buildup in the belly region. As a result, it’s important to categorize and forecast diabetes patients based on their dietary intake. In this study, we used the pre-trained Inception V3, Keras, and Tensorflow convolutional neural network (CNN) model to identify different food categories. Comparing the CNN model’s accuracy to other methods from earlier studies, it achieved 96.6%, which is fairly high. Additionally, there is a correlation between calories with fat, carbs, protein, and sugar related with T2DM via linear regression between nutrition classes.
使用卷积神经网络对II型糖尿病进行营养分析
最常见的疾病是2型糖尿病(T2DM),一种慢性代谢紊乱。2型糖尿病与下半身腹部周围的脂肪堆积有关,这会导致腹部区域的脂肪堆积。因此,根据饮食摄入量对糖尿病患者进行分类和预测是很重要的。在这项研究中,我们使用预训练的Inception V3、Keras和Tensorflow卷积神经网络(CNN)模型来识别不同的食物类别。将CNN模型的准确率与早期研究的其他方法进行比较,达到了96.6%,这是相当高的。此外,通过营养类别之间的线性回归,卡路里与脂肪、碳水化合物、蛋白质和与T2DM相关的糖之间存在相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信