A distributed geospatial data storage and processing framework for large-scale WebGIS

Yunqin Zhong, Jizhong Han, Tieying Zhang, Jinyun Fang
{"title":"A distributed geospatial data storage and processing framework for large-scale WebGIS","authors":"Yunqin Zhong, Jizhong Han, Tieying Zhang, Jinyun Fang","doi":"10.1109/Geoinformatics.2012.6270347","DOIUrl":null,"url":null,"abstract":"With the rapid growth of geospatial data and concurrent users, the state-of-the-art WebGIS cannot support massive data storage and processing due to poor scalability of underlying centralized systems (e.g., native file systems and SDBMS). In this paper, we propose a novel distributed geospatial data storage and processing framework for large-scale WebGIS. Our proposal contains three significant characteristics. Firstly, a scalable cloud-based architecture is designed to provide elastic storage and computation resources of shared-nothing commodity cluster for WebGIS. Secondly, we present efficient geospatial data placement and geospatial data access refinement schemes to improve I/O efficiency. Thirdly, we propose MapReduce based localized geospatial computing model for parallel processing of massive geospatial data, which improves geospatial computation performance. We have implemented a prototype named VegaCI on top of the emerging Hadoop cloud platform. Comprehensive experiments demonstrate that our proposal is efficient and applicable in practical large-scale WebGIS.","PeriodicalId":259976,"journal":{"name":"2012 20th International Conference on Geoinformatics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 20th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2012.6270347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

With the rapid growth of geospatial data and concurrent users, the state-of-the-art WebGIS cannot support massive data storage and processing due to poor scalability of underlying centralized systems (e.g., native file systems and SDBMS). In this paper, we propose a novel distributed geospatial data storage and processing framework for large-scale WebGIS. Our proposal contains three significant characteristics. Firstly, a scalable cloud-based architecture is designed to provide elastic storage and computation resources of shared-nothing commodity cluster for WebGIS. Secondly, we present efficient geospatial data placement and geospatial data access refinement schemes to improve I/O efficiency. Thirdly, we propose MapReduce based localized geospatial computing model for parallel processing of massive geospatial data, which improves geospatial computation performance. We have implemented a prototype named VegaCI on top of the emerging Hadoop cloud platform. Comprehensive experiments demonstrate that our proposal is efficient and applicable in practical large-scale WebGIS.
面向大规模WebGIS的分布式地理空间数据存储与处理框架
随着地理空间数据和并发用户的快速增长,由于底层集中式系统(如本机文件系统和SDBMS)的可扩展性较差,最先进的WebGIS无法支持海量数据的存储和处理。本文提出了一种面向大规模WebGIS的分布式地理空间数据存储与处理框架。我们的建议包含三个重要特点。首先,设计了一种可扩展的云架构,为WebGIS提供无共享商品集群的弹性存储和计算资源;其次,我们提出了有效的地理空间数据放置和地理空间数据访问优化方案,以提高I/O效率。第三,提出了基于MapReduce的局部地理空间计算模型,用于海量地理空间数据的并行处理,提高了地理空间计算性能。我们在新兴的Hadoop云平台上实现了一个名为VegaCI的原型。综合实验表明,该方法在实际的大规模WebGIS中是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信