Signal modeling using increments of extended self-similar processes

Lance M. Kaplan, C.-C. Jay Kuo
{"title":"Signal modeling using increments of extended self-similar processes","authors":"Lance M. Kaplan, C.-C. Jay Kuo","doi":"10.1109/ICASSP.1994.389855","DOIUrl":null,"url":null,"abstract":"The article expands the fractional Brownian motion (fBm) model by investigating the idea of generalizing self-similarity to create extended self-similar (ESS) processes for which fBm processes are a subset. Properties of ESS processes are discussed, and an ESS increment model parameterized by variables controlling short and long term correlation effects is examined. We propose a fast parameter estimation algorithm for the new model which is based on the decorrelation effect of the Haar transform on the ESS increments, and we demonstrate the performance of this parameter estimation algorithm with numerical simulations.<<ETX>>","PeriodicalId":290798,"journal":{"name":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1994.389855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The article expands the fractional Brownian motion (fBm) model by investigating the idea of generalizing self-similarity to create extended self-similar (ESS) processes for which fBm processes are a subset. Properties of ESS processes are discussed, and an ESS increment model parameterized by variables controlling short and long term correlation effects is examined. We propose a fast parameter estimation algorithm for the new model which is based on the decorrelation effect of the Haar transform on the ESS increments, and we demonstrate the performance of this parameter estimation algorithm with numerical simulations.<>
使用扩展自相似过程增量的信号建模
本文通过研究推广自相似的思想来扩展分数布朗运动(fBm)模型,以创建扩展自相似(ESS)过程,其中fBm过程是一个子集。讨论了ESS过程的性质,并研究了由控制短期和长期相关效应的变量参数化的ESS增量模型。基于Haar变换对ESS增量的去相关效应,提出了一种基于Haar变换对ESS增量去相关效应的快速参数估计算法,并通过数值仿真验证了该算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信