Towards an Algebraic Topos Semantics for Three-valued Gödel Logic

S. Aguzzoli, P. Codara
{"title":"Towards an Algebraic Topos Semantics for Three-valued Gödel Logic","authors":"S. Aguzzoli, P. Codara","doi":"10.1109/FUZZ45933.2021.9494547","DOIUrl":null,"url":null,"abstract":"The algebraic semantics of Gödel propositional logic is given by the variety of Gödel algebras, which in turns form a category dually equivalent to the pro-finite completion of the category of finite forests and order-preserving open maps. Forests provide a sound and complete semantics for propositional infinite-valued Gödel logic, while propositional k-valued Gödel logic is sound and complete for forests of height at most $k-1$. In this work we shall mainly deal with three-valued Gödel logic. We shall show that the subcategory of forests of height at most 2 (bushes) forms an elementary topos, thus providing naturally a generalisation to bushes of all classical first-order set concepts, suitable for developing a first-order three-valued Gödel logic semantics based on bush concepts instead of sets.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"203 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The algebraic semantics of Gödel propositional logic is given by the variety of Gödel algebras, which in turns form a category dually equivalent to the pro-finite completion of the category of finite forests and order-preserving open maps. Forests provide a sound and complete semantics for propositional infinite-valued Gödel logic, while propositional k-valued Gödel logic is sound and complete for forests of height at most $k-1$. In this work we shall mainly deal with three-valued Gödel logic. We shall show that the subcategory of forests of height at most 2 (bushes) forms an elementary topos, thus providing naturally a generalisation to bushes of all classical first-order set concepts, suitable for developing a first-order three-valued Gödel logic semantics based on bush concepts instead of sets.
三值Gödel逻辑的代数拓扑语义
Gödel命题逻辑的代数语义是由Gödel代数的变化给出的,这些代数反过来形成一个范畴对偶等价于有限森林和保序开映射范畴的前有限补全。森林为命题无限值Gödel逻辑提供了健全和完备的语义,而命题k值Gödel逻辑对于高度最多为$k-1$的森林是健全和完备的。在这项工作中,我们将主要处理三值Gödel逻辑。我们将证明高度不超过2的森林的子范畴(灌木)形成了一个基本拓扑,从而自然地提供了对所有经典一阶集合概念的灌木的推广,适合于基于灌木概念而不是集合开发一阶三值Gödel逻辑语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信