Motor Imagery EEG Data Augmentation with cWGAN-GP for Brain-Computer Interfaces

L. H. D. Santos, D. Fantinato
{"title":"Motor Imagery EEG Data Augmentation with cWGAN-GP for Brain-Computer Interfaces","authors":"L. H. D. Santos, D. Fantinato","doi":"10.5753/eniac.2022.227592","DOIUrl":null,"url":null,"abstract":"Motor imagery is a paradigm in Brain-Computer Interface (BCI) systems based on EEG data. Recently, Deep Neural Networks (DNNs), such as EEGNet, have become a vital component for those systems, overcoming previous state-of-the-art techniques for classifying these data. However, most motor imagery EEG datasets are relatively small, hindering DNNs from achieving better results. In this sense, we propose using Generative Adversarial Networks to augment dataset 1 from the BCI Competition IV for classification efficiency improvement. In addition, we explore augmentation with Gaussian noise for comparison purposes. The experiments were analyzed considering the intrasubject and cross-subject perspectives.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motor imagery is a paradigm in Brain-Computer Interface (BCI) systems based on EEG data. Recently, Deep Neural Networks (DNNs), such as EEGNet, have become a vital component for those systems, overcoming previous state-of-the-art techniques for classifying these data. However, most motor imagery EEG datasets are relatively small, hindering DNNs from achieving better results. In this sense, we propose using Generative Adversarial Networks to augment dataset 1 from the BCI Competition IV for classification efficiency improvement. In addition, we explore augmentation with Gaussian noise for comparison purposes. The experiments were analyzed considering the intrasubject and cross-subject perspectives.
基于cWGAN-GP的脑机接口运动图像脑电数据增强
运动图像是基于脑电数据的脑机接口(BCI)系统的一个范例。最近,深度神经网络(dnn),如EEGNet,已经成为这些系统的重要组成部分,克服了以前最先进的数据分类技术。然而,大多数运动图像EEG数据集相对较小,阻碍了dnn获得更好的结果。在这个意义上,我们建议使用生成式对抗网络来增强来自BCI竞赛IV的数据集1,以提高分类效率。此外,为了进行比较,我们探讨了高斯噪声的增强。从主体内和跨主体的角度对实验进行分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信