{"title":"WindCrete Fatigue Verification","authors":"P. Trubat, J. Bairán, A. Yagüe, C. Molins","doi":"10.1115/iowtc2019-7564","DOIUrl":null,"url":null,"abstract":"\n WindCrete is an offshore concrete spar type platform for Wind Turbines developed at Universitat Politècnica de Catalunya – BarcelonaTech. The main characteristics of the platform are its monolithic configuration and the use of concrete as main material. The monolithic nature allows avoiding joints between the substructure and the tower increasing the service life of the structure. The use of concrete increases the resistance when exposed to an offshore environment but requires ensuring a full compression state along the structure to avoid cracking. Thus, the platform is post-tensioned by longitudinal tendons along its length.\n Adequate fatigue design is a key factor to ensure the reliability of offshore structures. Floating Offshore Wind Turbines are subjected to cyclic phenomena coming from waves, wind, rotor-induced vibrations and structural vibrations. These loads have to be considered in order to assess the fatigue life of offshore structures. Furthermore, pre-stressed concrete adds an internal load such that it avoids the presence of tension stresses at any given section, which has a positive influence on the fatigue response of the structure by increasing its fatigue resistance. An excess of compression can, however, also induce an adverse effect on the fatigue resistance of the concrete.\n In order to study the fatigue behaviour of WindCrete when fitted with a 5MW Wind Turbine, a Fatigue Limit State verification is performed according to the DNVGL-ST-0437 for load cases definition and FIB Model Code (2010) for fatigue structural verification. The location chosen to install WindCrete is the Gulf de Lion, at the west of the Mediteranian Sea off the coast of Catalunya with a mean wind speed above 9 m/s. The metocean conditions for design purpose are presented, which are obtained from available environmental data.\n A total of 458 simulation cases are performed using the NREL FAST software assuming wind and wave co-directionally, and quasi-static mooring response for Parked and Power-Production operational modes. Assuming an elastic response of the tower, the internal stresses at the tower base are obtained for all the simulations. Then, a fatigue analysis is performed at the tower base through a cumulative damage approach based on the Palmgren-Miner rule. The analysis accounted for the multiaxial stresses produced by the combination of axial, bending and tangential forces. The S-N material curves were defined according to the Model Code 2010 method, which accounts for the effect of the stress range as well as the average stress.","PeriodicalId":131294,"journal":{"name":"ASME 2019 2nd International Offshore Wind Technical Conference","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME 2019 2nd International Offshore Wind Technical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/iowtc2019-7564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
WindCrete is an offshore concrete spar type platform for Wind Turbines developed at Universitat Politècnica de Catalunya – BarcelonaTech. The main characteristics of the platform are its monolithic configuration and the use of concrete as main material. The monolithic nature allows avoiding joints between the substructure and the tower increasing the service life of the structure. The use of concrete increases the resistance when exposed to an offshore environment but requires ensuring a full compression state along the structure to avoid cracking. Thus, the platform is post-tensioned by longitudinal tendons along its length.
Adequate fatigue design is a key factor to ensure the reliability of offshore structures. Floating Offshore Wind Turbines are subjected to cyclic phenomena coming from waves, wind, rotor-induced vibrations and structural vibrations. These loads have to be considered in order to assess the fatigue life of offshore structures. Furthermore, pre-stressed concrete adds an internal load such that it avoids the presence of tension stresses at any given section, which has a positive influence on the fatigue response of the structure by increasing its fatigue resistance. An excess of compression can, however, also induce an adverse effect on the fatigue resistance of the concrete.
In order to study the fatigue behaviour of WindCrete when fitted with a 5MW Wind Turbine, a Fatigue Limit State verification is performed according to the DNVGL-ST-0437 for load cases definition and FIB Model Code (2010) for fatigue structural verification. The location chosen to install WindCrete is the Gulf de Lion, at the west of the Mediteranian Sea off the coast of Catalunya with a mean wind speed above 9 m/s. The metocean conditions for design purpose are presented, which are obtained from available environmental data.
A total of 458 simulation cases are performed using the NREL FAST software assuming wind and wave co-directionally, and quasi-static mooring response for Parked and Power-Production operational modes. Assuming an elastic response of the tower, the internal stresses at the tower base are obtained for all the simulations. Then, a fatigue analysis is performed at the tower base through a cumulative damage approach based on the Palmgren-Miner rule. The analysis accounted for the multiaxial stresses produced by the combination of axial, bending and tangential forces. The S-N material curves were defined according to the Model Code 2010 method, which accounts for the effect of the stress range as well as the average stress.