Macroflow: A fine-grained networking abstraction for job completion time oriented scheduling in datacenters

Chen Tian, Junhua Yan, A. Liu, Yizhou Tang, Yuankun Zhong, Zi Li
{"title":"Macroflow: A fine-grained networking abstraction for job completion time oriented scheduling in datacenters","authors":"Chen Tian, Junhua Yan, A. Liu, Yizhou Tang, Yuankun Zhong, Zi Li","doi":"10.1109/ICNP.2016.7784473","DOIUrl":null,"url":null,"abstract":"For a datacenter running a data-parallel analytic framework, minimizing job completion time (JCT) is crucial for application performance. The key observation is that JCT could be improved, if network scheduling can exploit the opportunity of decreasing the amount of occupied machine slot-time spend on communication. We propose Macroflow, a networking abstraction that captures the primitive resource granularity of data-parallel frameworks. We study the inter-macroflow scheduling problem for decreasing application JCT. We propose the Smallest-Macroflow-First (SMF) and Smallest-Average-Macroflow-First (SAMF) heuristics that greedily schedule macroflows based on their network footprint. Trace-driven simulations demonstrate that our algorithms can reduce the average and tail JCT of network-intensive jobs by up to 20% and 25%, respectively; at the same time, the throughput of computation-intensive jobs is increased by up to 2.2×.","PeriodicalId":115376,"journal":{"name":"2016 IEEE 24th International Conference on Network Protocols (ICNP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 24th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP.2016.7784473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For a datacenter running a data-parallel analytic framework, minimizing job completion time (JCT) is crucial for application performance. The key observation is that JCT could be improved, if network scheduling can exploit the opportunity of decreasing the amount of occupied machine slot-time spend on communication. We propose Macroflow, a networking abstraction that captures the primitive resource granularity of data-parallel frameworks. We study the inter-macroflow scheduling problem for decreasing application JCT. We propose the Smallest-Macroflow-First (SMF) and Smallest-Average-Macroflow-First (SAMF) heuristics that greedily schedule macroflows based on their network footprint. Trace-driven simulations demonstrate that our algorithms can reduce the average and tail JCT of network-intensive jobs by up to 20% and 25%, respectively; at the same time, the throughput of computation-intensive jobs is increased by up to 2.2×.
Macroflow:一个细粒度的网络抽象,用于数据中心中面向任务完成时间的调度
对于运行数据并行分析框架的数据中心,最小化作业完成时间(JCT)对于应用程序性能至关重要。关键的观察结果是,如果网络调度能够利用减少用于通信的占用的机器时隙时间的机会,那么JCT可以得到改进。我们提出Macroflow,这是一种捕获数据并行框架的原始资源粒度的网络抽象。研究了减少应用JCT的宏流间调度问题。我们提出了最小宏流优先(SMF)和最小平均宏流优先(SAMF)启发式算法,它们根据宏流的网络占用来贪婪地调度宏流。跟踪驱动仿真表明,我们的算法可以将网络密集型作业的平均JCT和尾部JCT分别降低20%和25%;同时,计算密集型作业的吞吐量提高了2.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信