Representation and classification of iris textures based on diagonal linear discriminant analysis

E. Assunção, J. R. Pereira, M. Costa, C. Filho, Rafael Padilla
{"title":"Representation and classification of iris textures based on diagonal linear discriminant analysis","authors":"E. Assunção, J. R. Pereira, M. Costa, C. Filho, Rafael Padilla","doi":"10.1109/IVMSPW.2011.5970356","DOIUrl":null,"url":null,"abstract":"Subspace methods are frequently used in pattern recognition problems aiming to reduce space dimension by determining its projection vectors. This paper presents subspace methods for feature extraction in an iris image called two-dimensional linear discriminant analysis (2DLDA), diagonal linear discriminant analysis (DiaLDA) and their combination (DiaLDA+2DLDA). The methods were applied in an UBIRIS image database, and the experimental results showed that DiaLDA+2DLDA overcame the 2DLDA method in recognition accuracy. Both methods are powerful in terms of dimension reduction and class discrimination.","PeriodicalId":405588,"journal":{"name":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th IVMSP Workshop: Perception and Visual Signal Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2011.5970356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Subspace methods are frequently used in pattern recognition problems aiming to reduce space dimension by determining its projection vectors. This paper presents subspace methods for feature extraction in an iris image called two-dimensional linear discriminant analysis (2DLDA), diagonal linear discriminant analysis (DiaLDA) and their combination (DiaLDA+2DLDA). The methods were applied in an UBIRIS image database, and the experimental results showed that DiaLDA+2DLDA overcame the 2DLDA method in recognition accuracy. Both methods are powerful in terms of dimension reduction and class discrimination.
基于对角线性判别分析的虹膜纹理表示与分类
子空间方法常用于模式识别问题,其目的是通过确定空间的投影向量来降低空间维数。本文提出了用于虹膜图像特征提取的子空间方法,即二维线性判别分析(2DLDA)、对角线性判别分析(DiaLDA)及其组合(DiaLDA+2DLDA)。将该方法应用于UBIRIS图像数据库,实验结果表明,DiaLDA+2DLDA在识别精度上优于2DLDA方法。这两种方法在降维和阶级区分方面都很强大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信