Algorithms for Discrete Differential Equations of Order 1

A. Bostan, F. Chyzak, Hadrien Notarantonio, M. S. E. Din
{"title":"Algorithms for Discrete Differential Equations of Order 1","authors":"A. Bostan, F. Chyzak, Hadrien Notarantonio, M. S. E. Din","doi":"10.1145/3476446.3535471","DOIUrl":null,"url":null,"abstract":"Discrete differential equations of order 1 relate polynomially a power series F(t,u) in t with polynomial coefficients in a ''catalytic'' variable~u and one of its specializations, say F(t,u). Such equations are ubiquitous in combinatorics, notably in the enumeration of maps and walks. When the solution F is unique, a celebrated result by Bousquet-Mélou and Jehanne, reminiscent of Popescu's theorem in commutative algebra, states that F is algebraic. We address algorithmic and complexity questions related to this result. In generic situations, we first revisit and analyze known algorithms, based either on polynomial elimination or on the guess-and-prove paradigm. We then design two new algorithms: the first has a geometric flavor, the second blends elimination and guess-and-prove. In the general case (no genericity assumptions), we prove that the total arithmetic size of the algebraic equations for $F(t,1)$ is bounded polynomially in the size of the input discrete differential equation, and that one can compute such equations in polynomial time.","PeriodicalId":130499,"journal":{"name":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3476446.3535471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Discrete differential equations of order 1 relate polynomially a power series F(t,u) in t with polynomial coefficients in a ''catalytic'' variable~u and one of its specializations, say F(t,u). Such equations are ubiquitous in combinatorics, notably in the enumeration of maps and walks. When the solution F is unique, a celebrated result by Bousquet-Mélou and Jehanne, reminiscent of Popescu's theorem in commutative algebra, states that F is algebraic. We address algorithmic and complexity questions related to this result. In generic situations, we first revisit and analyze known algorithms, based either on polynomial elimination or on the guess-and-prove paradigm. We then design two new algorithms: the first has a geometric flavor, the second blends elimination and guess-and-prove. In the general case (no genericity assumptions), we prove that the total arithmetic size of the algebraic equations for $F(t,1)$ is bounded polynomially in the size of the input discrete differential equation, and that one can compute such equations in polynomial time.
1阶离散微分方程的算法
1阶的离散微分方程将t中的幂级数F(t,u)与“催化”变量~u及其专门化变量之一F(t,u)中的多项式系数多项式地联系起来。这样的方程在组合学中无处不在,特别是在地图和路径的枚举中。当解F是唯一时,由bousquet - msamulou和Jehanne得出的一个著名的结果,让人想起交换代数中的波佩斯库定理,表明F是代数的。我们解决了与此结果相关的算法和复杂性问题。在一般情况下,我们首先基于多项式消除或猜测-证明范式重新审视和分析已知算法。然后我们设计了两种新的算法:第一种具有几何风味,第二种混合了消除和猜测和证明。在一般情况下(没有一般性假设),我们证明了F(t,1)的代数方程的总算术大小与输入的离散微分方程的大小是多项式有界的,并且可以在多项式时间内计算出这样的方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信