A State-Space Perspective on the Expedited Gradient Methods: Nadam, RAdam, and Rescaled Gradient Flow

Kushal Chakrabarti, N. Chopra
{"title":"A State-Space Perspective on the Expedited Gradient Methods: Nadam, RAdam, and Rescaled Gradient Flow","authors":"Kushal Chakrabarti, N. Chopra","doi":"10.1109/ICC56513.2022.10093397","DOIUrl":null,"url":null,"abstract":"Fast gradient-descent algorithms are the default practice in training complex machine learning models. This paper presents the convergence guarantee of two existing adaptive gradient algorithms, Nadam and RAdam, for the first time, and the rescaled gradient flow in solving non-convex optimization. The analyses of all three algorithms are unified by a common underlying proof sketch, relying upon Barbalat's lemma. The utility of another tool from classical control, the transfer function, hitherto used to propose a new variant of the famous Adam optimizer, is extended in this paper for developing an improved variant of the Nadam algorithm. Our experimental results validate the efficiency of this proposed algorithm for solving benchmark machine learning problems in a shorter time and with enhanced accuracy.","PeriodicalId":101654,"journal":{"name":"2022 Eighth Indian Control Conference (ICC)","volume":"321 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Eighth Indian Control Conference (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC56513.2022.10093397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fast gradient-descent algorithms are the default practice in training complex machine learning models. This paper presents the convergence guarantee of two existing adaptive gradient algorithms, Nadam and RAdam, for the first time, and the rescaled gradient flow in solving non-convex optimization. The analyses of all three algorithms are unified by a common underlying proof sketch, relying upon Barbalat's lemma. The utility of another tool from classical control, the transfer function, hitherto used to propose a new variant of the famous Adam optimizer, is extended in this paper for developing an improved variant of the Nadam algorithm. Our experimental results validate the efficiency of this proposed algorithm for solving benchmark machine learning problems in a shorter time and with enhanced accuracy.
加速梯度方法的状态空间视角:那达慕、RAdam和重尺度梯度流
快速梯度下降算法是训练复杂机器学习模型的默认做法。本文首次给出了现有的两种自适应梯度算法Nadam和RAdam的收敛性保证,以及重新缩放的梯度流在求解非凸优化中的应用。所有三种算法的分析都由一个共同的基础证明草图统一,依赖于Barbalat的引理。传递函数是经典控制中的另一种工具,迄今为止,它被用来提出著名的亚当优化器的一个新变体,本文扩展了传递函数,以开发纳达姆算法的改进变体。我们的实验结果验证了该算法在更短的时间内解决基准机器学习问题的效率和更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信