Aggregate Intensification of Natural Convection Between Air and a Vertical Parallel-Plate Channel by Inserting an Auxiliary Plate at the Mouth and Appending Colinear Insulated Plates at the Exit
{"title":"Aggregate Intensification of Natural Convection Between Air and a Vertical Parallel-Plate Channel by Inserting an Auxiliary Plate at the Mouth and Appending Colinear Insulated Plates at the Exit","authors":"A. Andreozzi, O. Manca, A. Campo","doi":"10.1115/imece2000-1547","DOIUrl":null,"url":null,"abstract":"\n This paper addresses the examination of heat transfer in parallel-plate channels using a combination of two passive schemes: (1) the insertion of an auxiliary plate at the mouth and (2) the appendage of colinear insulated plates at the exit. The investigation is made by numerically solving the full elliptic Navier-Stokes and energy equation in a I-type computational domain. The channel is symmetrically heated by uniform heat flux. The working fluid is air. The results are reported in terms of induced mass flow rate and maximum wall temperatures. Further, the local Nusselt number, the mean Nusselt number and pressure profiles are presented. The analyzed Grashof numbers based on the heated plate height are 103 and 106.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the examination of heat transfer in parallel-plate channels using a combination of two passive schemes: (1) the insertion of an auxiliary plate at the mouth and (2) the appendage of colinear insulated plates at the exit. The investigation is made by numerically solving the full elliptic Navier-Stokes and energy equation in a I-type computational domain. The channel is symmetrically heated by uniform heat flux. The working fluid is air. The results are reported in terms of induced mass flow rate and maximum wall temperatures. Further, the local Nusselt number, the mean Nusselt number and pressure profiles are presented. The analyzed Grashof numbers based on the heated plate height are 103 and 106.