Golay meets Hadamard: Golay-paired Hadamard matrices for fast compressed sensing

Lu Gan, Kezhi Li, Cong Ling
{"title":"Golay meets Hadamard: Golay-paired Hadamard matrices for fast compressed sensing","authors":"Lu Gan, Kezhi Li, Cong Ling","doi":"10.1109/ITW.2012.6404755","DOIUrl":null,"url":null,"abstract":"This paper introduces Golay-paired Hadamard matrices for fast compressed sensing of sparse signals in the time or spectral domain. These sampling operators feature low-memory requirement, hardware-friendly implementation and fast computation in reconstruction. We show that they require a nearly optimal number of measurements for faithful reconstruction of a sparse signal in the time or frequency domain. Simulation results demonstrate that the proposed sensing matrices offer a reconstruction performance similar to that of fully random matrices.","PeriodicalId":325771,"journal":{"name":"2012 IEEE Information Theory Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2012.6404755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper introduces Golay-paired Hadamard matrices for fast compressed sensing of sparse signals in the time or spectral domain. These sampling operators feature low-memory requirement, hardware-friendly implementation and fast computation in reconstruction. We show that they require a nearly optimal number of measurements for faithful reconstruction of a sparse signal in the time or frequency domain. Simulation results demonstrate that the proposed sensing matrices offer a reconstruction performance similar to that of fully random matrices.
Golay满足Hadamard:用于快速压缩感知的Golay配对Hadamard矩阵
本文介绍了在时域和谱域对稀疏信号进行快速压缩感知的golay配对Hadamard矩阵。这些采样算子具有内存要求低、实现硬件友好、重构计算速度快等特点。我们表明,它们需要几乎最优的测量数量来在时间或频域忠实地重建稀疏信号。仿真结果表明,所提出的传感矩阵具有与全随机矩阵相似的重构性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信