PREDIKSI HARGA CABAI MERAH MENGGUNAKAN SUPPORT VECTOR REGRESSION

Domi Sepri, Ahmad Fauzi
{"title":"PREDIKSI HARGA CABAI MERAH MENGGUNAKAN SUPPORT VECTOR REGRESSION","authors":"Domi Sepri, Ahmad Fauzi","doi":"10.33884/cbis.v8i2.1921","DOIUrl":null,"url":null,"abstract":"The aim of the research is to make a model to predict the national price of the red chili pepper using Support Vector Regression (SVR). Data used to make model are the price of red chili from January 2017 to December 2019. For finding the best parameter of the hyperplane, the research uses Grid Search Algorithm.  The best parameter of the hyperplane is C=1000, epsilon=5, and Gamma =1 . The result shows the MAPE for data training is 4.07% and the MAPE for data testing is 9.11%.","PeriodicalId":413767,"journal":{"name":"Computer Based Information System Journal","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Based Information System Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33884/cbis.v8i2.1921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The aim of the research is to make a model to predict the national price of the red chili pepper using Support Vector Regression (SVR). Data used to make model are the price of red chili from January 2017 to December 2019. For finding the best parameter of the hyperplane, the research uses Grid Search Algorithm.  The best parameter of the hyperplane is C=1000, epsilon=5, and Gamma =1 . The result shows the MAPE for data training is 4.07% and the MAPE for data testing is 9.11%.
本研究的目的是利用支持向量回归(SVR)建立一个预测全国红辣椒价格的模型。用于制作模型的数据是2017年1月至2019年12月红辣椒的价格。为了寻找超平面的最佳参数,研究使用了网格搜索算法。超平面的最佳参数为C=1000, epsilon=5, Gamma =1。结果表明,数据训练的MAPE为4.07%,数据测试的MAPE为9.11%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信