Binarization of music score images using line width transform

Vo Quang Nhat, Gueesang Lee
{"title":"Binarization of music score images using line width transform","authors":"Vo Quang Nhat, Gueesang Lee","doi":"10.1109/FCV.2015.7103736","DOIUrl":null,"url":null,"abstract":"Although the original Gaussian Mixture Markov Random Field model can generate good binarization results for scene text images, it still has some issues needed to be solved in case of music score images. The difficulty is the ineffective seeding algorithm when it is applied to music score images which consist of thin lines, and isolated and complex background regions. A wrong seeding makes the false positive and false negative in foreground and background labelling. In this paper, a new adaptive model for the binarization of complex background music score image is proposed. We suggest a line width transform based seeding method for a better GMMs initialization of foreground and background color distribution in music score image. The result is the better binarization with cleaner background and clearer foreground compared to previous binarization techniques.","PeriodicalId":424974,"journal":{"name":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 21st Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCV.2015.7103736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Although the original Gaussian Mixture Markov Random Field model can generate good binarization results for scene text images, it still has some issues needed to be solved in case of music score images. The difficulty is the ineffective seeding algorithm when it is applied to music score images which consist of thin lines, and isolated and complex background regions. A wrong seeding makes the false positive and false negative in foreground and background labelling. In this paper, a new adaptive model for the binarization of complex background music score image is proposed. We suggest a line width transform based seeding method for a better GMMs initialization of foreground and background color distribution in music score image. The result is the better binarization with cleaner background and clearer foreground compared to previous binarization techniques.
使用线宽变换的乐谱图像二值化
虽然原始的高斯混合马尔可夫随机场模型对于场景文本图像可以产生很好的二值化结果,但是对于乐谱图像仍然存在一些问题需要解决。该算法的难点在于,当它应用于由细线组成的乐谱图像和孤立复杂的背景区域时,其种子算法效果不佳。错误的播种会在前景和背景标记中产生假阳性和假阴性。本文提出了一种新的复杂背景乐谱图像二值化自适应模型。为了更好地初始化乐谱图像的前景和背景颜色分布,提出了一种基于线宽变换的种子算法。与以往的二值化技术相比,二值化效果更好,背景更清晰,前景更清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信