Improving Accuracy of Inkjet Printed Core Body WRAP Temperature Sensor Using Random Forest Regression Implemented with an Android App

Md Juber Rahman, B. Morshed
{"title":"Improving Accuracy of Inkjet Printed Core Body WRAP Temperature Sensor Using Random Forest Regression Implemented with an Android App","authors":"Md Juber Rahman, B. Morshed","doi":"10.23919/USNC-URSI-NRSM.2019.8712966","DOIUrl":null,"url":null,"abstract":"Inkjet printing (IJP) technology holds tremendous promise for the development of low cost, environment friendly and body-worn biomedical sensors. In this study, we have investigated the integration of a flexible body-worn disposable IJP Wireless Resistive Analog Passive (WRAP) temperature sensor with an android app for real-time monitoring of core body temperature with high accuracy using features extracted from the sensor response. Random Forest has been used for feature selection and regression. With 5-fold cross validation we have achieved an RMSE = 0.98, R-squared value = 0.99, and mean absolute error, MAE = 0.59 for temperature estimation. The model is applicable for the development of IJP body-worn sensors for various other physiological sensing e.g. breathing, heart rate.","PeriodicalId":142320,"journal":{"name":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI-NRSM.2019.8712966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Inkjet printing (IJP) technology holds tremendous promise for the development of low cost, environment friendly and body-worn biomedical sensors. In this study, we have investigated the integration of a flexible body-worn disposable IJP Wireless Resistive Analog Passive (WRAP) temperature sensor with an android app for real-time monitoring of core body temperature with high accuracy using features extracted from the sensor response. Random Forest has been used for feature selection and regression. With 5-fold cross validation we have achieved an RMSE = 0.98, R-squared value = 0.99, and mean absolute error, MAE = 0.59 for temperature estimation. The model is applicable for the development of IJP body-worn sensors for various other physiological sensing e.g. breathing, heart rate.
利用随机森林回归提高喷墨打印核心车身WRAP温度传感器的精度
喷墨打印技术为开发低成本、环保、可穿戴的生物医学传感器提供了巨大的前景。在这项研究中,我们研究了一种柔性的可穿戴的一次性IJP无线电阻模拟无源(WRAP)温度传感器与一个android应用程序的集成,该应用程序利用从传感器响应中提取的特征,高精度地实时监测核心体温。随机森林被用于特征选择和回归。通过5倍交叉验证,我们获得了RMSE = 0.98, r平方值= 0.99,平均绝对误差MAE = 0.59的温度估计。该模型适用于开发用于呼吸、心率等各种生理传感的IJP穿戴式传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信