Markov-Type Inequalities for Products of Müntz Polynomials

T. Erdélyi
{"title":"Markov-Type Inequalities for Products of Müntz Polynomials","authors":"T. Erdélyi","doi":"10.1006/jath.2001.3583","DOIUrl":null,"url":null,"abstract":"Let @[email protected]?(@l\"j)^~\"j\"=\"0 be a sequence of distinct real numbers. The span of {x^@l^\"^0, x^@l^\"^1, ..., x^@l^\"^n} over R is denoted by M\"n(@L)@?span{x^@l^\"^0, x^@l^\"^1, ..., x^@l^\"^n}. Elements of M\"n(@L) are called Muntz polynomials. The principal result of this paper is the following Markov-type inequality for products of Muntz polynomials. [email protected]@?(@l\"j)^~\"j\"=\"[email protected]@?(@c\"j)^~\"j\"=\"0be increasing sequences of nonnegative real numbers. LetK(M\"n(@L), M\"m(@C))@[email protected]?x(pq)'(x)@?\"[\"0\",\" \"1\"]@[email protected]?\"[\"0\",\" \"1\"]:[email protected]?M\"n(@L),[email protected]?M\"m(@C).Then13((m+1)@l\"n+(n+1)@c\"m)=","PeriodicalId":202056,"journal":{"name":"J. Approx. Theory","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Approx. Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1006/jath.2001.3583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Let @[email protected]?(@l"j)^~"j"="0 be a sequence of distinct real numbers. The span of {x^@l^"^0, x^@l^"^1, ..., x^@l^"^n} over R is denoted by M"n(@L)@?span{x^@l^"^0, x^@l^"^1, ..., x^@l^"^n}. Elements of M"n(@L) are called Muntz polynomials. The principal result of this paper is the following Markov-type inequality for products of Muntz polynomials. [email protected]@?(@l"j)^~"j"="[email protected]@?(@c"j)^~"j"="0be increasing sequences of nonnegative real numbers. LetK(M"n(@L), M"m(@C))@[email protected]?x(pq)'(x)@?"["0"," "1"]@[email protected]?"["0"," "1"]:[email protected]?M"n(@L),[email protected]?M"m(@C).Then13((m+1)@l"n+(n+1)@c"m)=
m ntz多项式积的markov型不等式
设@[email protected]?(@l"j)^~"j"="0是一个不同实数的序列。{x^@l^”^0,x^@l^”^1,…, x^@l^ ^n} / R表示为M ' n(@ l)@?span{x^@l^"^0, x^@l^"^1,…, x ^ @l ^ ^ n}。M ' n(@L)的元素称为蒙兹多项式。本文的主要结果是蒙兹多项式积的马尔可夫型不等式。[email protected]@?(@l"j)^~"j"="[email protected]@?(@c"j)^~"j"="0个递增的非负实数序列。LetK (M“n (@L), M M (@C)) @(邮件保护)? x (pq) (x) @ ?"["0"," "1"]@[email protected]?“(“0”,“1”]:[电子邮件保护]? M”n (@L),(邮件保护)? M M (@C) .Then13 ((M + 1) @L“n + (n + 1) @C”米)=
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信