Neurodynamic optimization approaches to robust pole assignment based on alternative robustness measures

Xinyi Le, Jun Wang
{"title":"Neurodynamic optimization approaches to robust pole assignment based on alternative robustness measures","authors":"Xinyi Le, Jun Wang","doi":"10.1109/IJCNN.2013.6706834","DOIUrl":null,"url":null,"abstract":"This paper presents new results on neurodynamic optimization approaches to robust pole assignment based on four alternative robustness measures. One or two recurrent neural networks are utilized to optimize these measures while making exact pole assignment. Compared with existing approaches, the present neurodynamic approaches can result in optimal robustness in most cases with one of the robustness measures. Simulation results of the proposed approaches for many benchmark problems are reported to demonstrate their performances.","PeriodicalId":376975,"journal":{"name":"The 2013 International Joint Conference on Neural Networks (IJCNN)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2013 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2013.6706834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents new results on neurodynamic optimization approaches to robust pole assignment based on four alternative robustness measures. One or two recurrent neural networks are utilized to optimize these measures while making exact pole assignment. Compared with existing approaches, the present neurodynamic approaches can result in optimal robustness in most cases with one of the robustness measures. Simulation results of the proposed approaches for many benchmark problems are reported to demonstrate their performances.
基于备选鲁棒性测度的鲁棒极点配置神经动力学优化方法
本文提出了基于四种鲁棒性度量的鲁棒极点配置的神经动力学优化方法的新结果。利用一个或两个递归神经网络来优化这些措施,同时进行精确的极点配置。与现有方法相比,神经动力学方法在大多数情况下使用其中一种鲁棒性度量即可获得最优鲁棒性。通过对多个基准问题的仿真,验证了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信