{"title":"Privacy Protection in Transformer-based Neural Network","authors":"Jiaqi Lang, Linjing Li, Weiyun Chen, D. Zeng","doi":"10.1109/ISI.2019.8823346","DOIUrl":null,"url":null,"abstract":"With the great success of neural networks, it is important to improve the information security of application systems based on them. This paper investigates a scenario where an attacker eavesdrops the intermediate representation computed by the encoder layers and tries to recover the private information of the input text. We propose a new metric to evaluate the encoder’s ability to protect privacy and evaluate the Transformer-based encoder, which is the first privacy research conducted on Transformer-based neural networks. We also propose an adversarial training method to enhance the privacy of Transformer-based neural networks.","PeriodicalId":156130,"journal":{"name":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2019.8823346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
With the great success of neural networks, it is important to improve the information security of application systems based on them. This paper investigates a scenario where an attacker eavesdrops the intermediate representation computed by the encoder layers and tries to recover the private information of the input text. We propose a new metric to evaluate the encoder’s ability to protect privacy and evaluate the Transformer-based encoder, which is the first privacy research conducted on Transformer-based neural networks. We also propose an adversarial training method to enhance the privacy of Transformer-based neural networks.