Privacy Protection in Transformer-based Neural Network

Jiaqi Lang, Linjing Li, Weiyun Chen, D. Zeng
{"title":"Privacy Protection in Transformer-based Neural Network","authors":"Jiaqi Lang, Linjing Li, Weiyun Chen, D. Zeng","doi":"10.1109/ISI.2019.8823346","DOIUrl":null,"url":null,"abstract":"With the great success of neural networks, it is important to improve the information security of application systems based on them. This paper investigates a scenario where an attacker eavesdrops the intermediate representation computed by the encoder layers and tries to recover the private information of the input text. We propose a new metric to evaluate the encoder’s ability to protect privacy and evaluate the Transformer-based encoder, which is the first privacy research conducted on Transformer-based neural networks. We also propose an adversarial training method to enhance the privacy of Transformer-based neural networks.","PeriodicalId":156130,"journal":{"name":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"181 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2019.8823346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the great success of neural networks, it is important to improve the information security of application systems based on them. This paper investigates a scenario where an attacker eavesdrops the intermediate representation computed by the encoder layers and tries to recover the private information of the input text. We propose a new metric to evaluate the encoder’s ability to protect privacy and evaluate the Transformer-based encoder, which is the first privacy research conducted on Transformer-based neural networks. We also propose an adversarial training method to enhance the privacy of Transformer-based neural networks.
基于变压器的神经网络隐私保护
随着神经网络的巨大成功,提高基于神经网络的应用系统的信息安全具有重要意义。本文研究了一种攻击者窃听由编码器层计算的中间表示并试图恢复输入文本的私有信息的场景。我们提出了一种新的指标来评估编码器的隐私保护能力,并对基于transformer的编码器进行了评估,这是首次对基于transformer的神经网络进行隐私研究。我们还提出了一种对抗训练方法来增强基于transformer的神经网络的隐私性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信