Geometry

M. Radin
{"title":"Geometry","authors":"M. Radin","doi":"10.1201/9781003089469-6","DOIUrl":null,"url":null,"abstract":"An efficient geometric formulation of the problem of parameter estimation is developed, based on Hilbert space geometry. This theory, which allows for a transparent transition between classical and quantum statistical inference, is then applied to the analysis of exponential families of distributions (of relevance to statistical mechanics) and quantum mechanical evolutions. The extension to quantum theory is achieved by the introduction of a complex structure on the given real Hilbert space. We find a set of higher order corrections to the parameter estimation variance lower bound, which are potentially important in quantum mechanics, where these corrections appear as modifications to Heisenberg uncertainty relations for the determination of the parameter. [S0031-9007(96)01153-2]","PeriodicalId":401390,"journal":{"name":"Introduction to Math Olympiad Problems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introduction to Math Olympiad Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003089469-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient geometric formulation of the problem of parameter estimation is developed, based on Hilbert space geometry. This theory, which allows for a transparent transition between classical and quantum statistical inference, is then applied to the analysis of exponential families of distributions (of relevance to statistical mechanics) and quantum mechanical evolutions. The extension to quantum theory is achieved by the introduction of a complex structure on the given real Hilbert space. We find a set of higher order corrections to the parameter estimation variance lower bound, which are potentially important in quantum mechanics, where these corrections appear as modifications to Heisenberg uncertainty relations for the determination of the parameter. [S0031-9007(96)01153-2]
几何
基于希尔伯特空间几何,提出了参数估计问题的有效几何公式。这个理论允许经典和量子统计推断之间的透明过渡,然后应用于指数族分布(与统计力学相关)和量子力学演化的分析。量子理论的扩展是通过在给定实数希尔伯特空间上引入复杂结构来实现的。我们发现了一组参数估计方差下界的高阶修正,这在量子力学中具有潜在的重要意义,其中这些修正表现为对海森堡不确定性关系的修正,用于确定参数。[s0031 - 9007 (96) 01153 - 2)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信