About adaptive state knowledge extraction for septic shock mortality prediction

R. Brause
{"title":"About adaptive state knowledge extraction for septic shock mortality prediction","authors":"R. Brause","doi":"10.1109/TAI.2002.1180781","DOIUrl":null,"url":null,"abstract":"The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This paper models medical symptoms as observations cased by transitions between hidden Markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data?.","PeriodicalId":197064,"journal":{"name":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.2002.1180781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This paper models medical symptoms as observations cased by transitions between hidden Markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data?.
关于感染性休克死亡率预测的自适应状态知识提取
死亡率的早期预测是重症监护医学尚未解决的问题之一。本文将医学症状建模为由隐马尔可夫状态之间的转换引起的观察结果。学习潜在的状态转移概率导致预测成功率约为91%。讨论了结果,并将其与所使用的模型联系起来。最后,反映了使用该模型的依据:脓毒性休克数据中是否存在状态?
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信