Capacity of large scale wireless networks under Gaussian channel model

Shi Li, Yunhao Liu, Xiangyang Li
{"title":"Capacity of large scale wireless networks under Gaussian channel model","authors":"Shi Li, Yunhao Liu, Xiangyang Li","doi":"10.1145/1409944.1409962","DOIUrl":null,"url":null,"abstract":"In this paper, we study the multicast capacity of a large scale random wireless network. We simply consider the extended multihop network, where a number of wireless nodes <i>v<sub>i</sub></i>(1 ≤ <i>i</i> ≤<i> n</i>) are randomly located in a square region with side-length <i>a</i> = √<i>n</i>, by use of Poisson distribution with density 1. All nodes transmit at constant power <i>P</i>, and the power decays along path, with attenuation exponent α > 2. The data rate of a transmission is determined by the SINR as <i>B</i> log(1 + SINR). There are <i>n<sub>s</sub></i> randomly and independently chosen multicast sessions. Each multicast has <i>k</i> randomly chosen terminals. We show that, when <i>k</i> ≤ θ<sub>1</sub> <i>n</i>/(log <i>n</i>)<sup>2α+6</sup>, and <i>n<sub>s</sub></i> ≥ θ<sub>2</sub><i>n</i><sup>1/2+β</sup>, the capacity that each multicast session can achieve, with high probability, is at least <i>c</i><sub>8</sub>√<i>n</i>/<i>n<sub>s</sub></i>√<i>k</i>, where θ<sub>1</sub>, θ<sub>2</sub>, and <i>c</i><sub>8</sub> are some special constants and β > 0 is any positive real number. Our result generalizes the unicast capacity [3] for random networks using percolation theory.","PeriodicalId":378295,"journal":{"name":"ACM/IEEE International Conference on Mobile Computing and Networking","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IEEE International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1409944.1409962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

In this paper, we study the multicast capacity of a large scale random wireless network. We simply consider the extended multihop network, where a number of wireless nodes vi(1 ≤ i n) are randomly located in a square region with side-length a = √n, by use of Poisson distribution with density 1. All nodes transmit at constant power P, and the power decays along path, with attenuation exponent α > 2. The data rate of a transmission is determined by the SINR as B log(1 + SINR). There are ns randomly and independently chosen multicast sessions. Each multicast has k randomly chosen terminals. We show that, when k ≤ θ1 n/(log n)2α+6, and ns ≥ θ2n1/2+β, the capacity that each multicast session can achieve, with high probability, is at least c8n/nsk, where θ1, θ2, and c8 are some special constants and β > 0 is any positive real number. Our result generalizes the unicast capacity [3] for random networks using percolation theory.
高斯信道模型下的大规模无线网络容量
本文研究了大规模随机无线网络中的组播容量问题。我们简单地考虑扩展多跳网络,其中若干无线节点vi(1≤i≤n)随机分布在边长为a =√n的方形区域中,使用密度为1的泊松分布。所有节点以恒定功率P传输,功率沿路径衰减,衰减指数α > 2。传输的数据速率由SINR确定为B log(1 + SINR)。有n个随机且独立选择的多播会话。每个组播有k个随机选择的终端。我们证明,当k≤θ1 n/(log n)2α+6,且ns≥θ2n1/2+β时,每个组播会话所能达到的容量大概率至少为c8√n/ns√k,其中θ1、θ2和c8是一些特殊常数,β > 0是任意正实数。我们的结果利用渗透理论推广了随机网络的单播容量[3]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信