Opposition diagrams for automorphisms of small spherical buildings

J. Parkinson, H. Maldeghem
{"title":"Opposition diagrams for automorphisms of small spherical buildings","authors":"J. Parkinson, H. Maldeghem","doi":"10.2140/iig.2019.17.141","DOIUrl":null,"url":null,"abstract":"An automorphism $\\theta$ of a spherical building $\\Delta$ is called \\textit{capped} if it satisfies the following property: if there exist both type $J_1$ and $J_2$ simplices of $\\Delta$ mapped onto opposite simplices by $\\theta$ then there exists a type $J_1\\cup J_2$ simplex of $\\Delta$ mapped onto an opposite simplex by $\\theta$. In previous work we showed that if $\\Delta$ is a thick irreducible spherical building of rank at least $3$ with no Fano plane residues then every automorphism of $\\Delta$ is capped. In the present work we consider the spherical buildings with Fano plane residues (the \\textit{small buildings}). We show that uncapped automorphisms exist in these buildings and develop an enhanced notion of \"opposition diagrams\" to capture the structure of these automorphisms. Moreover we provide applications to the theory of \"domesticity\" in spherical buildings, including the complete classification of domestic automorphisms of small buildings of types $\\mathsf{F}_4$ and $\\mathsf{E}_6$.","PeriodicalId":127937,"journal":{"name":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/iig.2019.17.141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

An automorphism $\theta$ of a spherical building $\Delta$ is called \textit{capped} if it satisfies the following property: if there exist both type $J_1$ and $J_2$ simplices of $\Delta$ mapped onto opposite simplices by $\theta$ then there exists a type $J_1\cup J_2$ simplex of $\Delta$ mapped onto an opposite simplex by $\theta$. In previous work we showed that if $\Delta$ is a thick irreducible spherical building of rank at least $3$ with no Fano plane residues then every automorphism of $\Delta$ is capped. In the present work we consider the spherical buildings with Fano plane residues (the \textit{small buildings}). We show that uncapped automorphisms exist in these buildings and develop an enhanced notion of "opposition diagrams" to capture the structure of these automorphisms. Moreover we provide applications to the theory of "domesticity" in spherical buildings, including the complete classification of domestic automorphisms of small buildings of types $\mathsf{F}_4$ and $\mathsf{E}_6$.
小型球形建筑自同构的对偶图
球形建筑$\Delta$的自同构$\theta$如果满足以下性质,则称为\textit{封顶的}:如果存在$\Delta$的$J_1$和$J_2$的单纯形被$\theta$映射到相反的单纯形,则存在$\Delta$的$J_1\cup J_2$单纯形被$\theta$映射到相反的单纯形。在以前的工作中,我们证明了如果$\Delta$是一个秩至少为$3$且没有Fano平面残基的厚的不可约球形建筑,那么$\Delta$的每一个自同构都是封顶的。在本工作中,我们考虑具有Fano平面残数的球形建筑物(\textit{小型建筑})。我们展示了这些建筑中存在未封顶的自同构,并开发了一个增强的“对立图”概念来捕获这些自同构的结构。此外,我们提供了“家庭生活”理论在球形建筑中的应用,包括类型为$\mathsf{F}_4$和$\mathsf{E}_6$的小型建筑的家庭自同构的完整分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信