{"title":"Adaptive Artificial Neural Networks for Water-Cut Estimation Using Near-Infrared Optical Sensors","authors":"Qin Li, K. Fjalestad","doi":"10.2118/195719-MS","DOIUrl":null,"url":null,"abstract":"\n In this paper, we present a water-cut estimator utilizing the function approximation capability of an artificial neural network (ANN). The inputs to the ANN are optical sensor readings in a Red-Eye water-cut meter, which features the near-infrared (NIR) absorption spectroscopy technology. The initial training of the ANNwas done with a data set acquired from our multi-phase flow-loop test facility, which was filled with live oil, water and gas. The test fluid stream was adjusted with good ranges of water-cut and gas-volume fractions which were supposed to cover the situations that can be foreseen in real production. However, clear discrepancies between the outputs of the ANN and the water-cut values from BS&W measurmentswere observedwhen the ANN was applied to actual production data measured by Red-Eye meters installed at two offshore wells. To address this issue and equip the ANN with self-adapting capability in real application, we propose a Bayesian approach to update the parameters of the ANN based on both initial flow-loop data and collected field data. The performance of the adapted ANN on both the data sets shows the effectiveness of the method.","PeriodicalId":113290,"journal":{"name":"Day 2 Wed, September 04, 2019","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 04, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195719-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we present a water-cut estimator utilizing the function approximation capability of an artificial neural network (ANN). The inputs to the ANN are optical sensor readings in a Red-Eye water-cut meter, which features the near-infrared (NIR) absorption spectroscopy technology. The initial training of the ANNwas done with a data set acquired from our multi-phase flow-loop test facility, which was filled with live oil, water and gas. The test fluid stream was adjusted with good ranges of water-cut and gas-volume fractions which were supposed to cover the situations that can be foreseen in real production. However, clear discrepancies between the outputs of the ANN and the water-cut values from BS&W measurmentswere observedwhen the ANN was applied to actual production data measured by Red-Eye meters installed at two offshore wells. To address this issue and equip the ANN with self-adapting capability in real application, we propose a Bayesian approach to update the parameters of the ANN based on both initial flow-loop data and collected field data. The performance of the adapted ANN on both the data sets shows the effectiveness of the method.