Dauphin: A Signal Processing Language - Statistical Signal Processing Made Easy

R. Kyprianou, P. Schachte, Bill Moran
{"title":"Dauphin: A Signal Processing Language - Statistical Signal Processing Made Easy","authors":"R. Kyprianou, P. Schachte, Bill Moran","doi":"10.1109/DICTA.2015.7371250","DOIUrl":null,"url":null,"abstract":"Dauphin is a new statistical signal processing language designed for easier formulation of detection, classification and estimation algorithms. This paper demonstrates the ease of developing signal processing algorithms in Dauphin. We illustrate this by providing exemplar code for two classifiers: Bayesian and k-means, and for an estimator: the Kalman filter. In all cases, and especially the last named, the code provides a more conceptually defined approach to these problems than other languages such as Matlab. Some Dauphin features under development are also highlighted, for instance a infinite list construct called streams, which is designed to be used as a natural representation of random processes.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dauphin is a new statistical signal processing language designed for easier formulation of detection, classification and estimation algorithms. This paper demonstrates the ease of developing signal processing algorithms in Dauphin. We illustrate this by providing exemplar code for two classifiers: Bayesian and k-means, and for an estimator: the Kalman filter. In all cases, and especially the last named, the code provides a more conceptually defined approach to these problems than other languages such as Matlab. Some Dauphin features under development are also highlighted, for instance a infinite list construct called streams, which is designed to be used as a natural representation of random processes.
一种信号处理语言-统计信号处理变得容易
Dauphin是一种新的统计信号处理语言,旨在更容易地制定检测,分类和估计算法。本文演示了在多芬中开发信号处理算法的便利性。我们通过提供两个分类器的示例代码来说明这一点:贝叶斯和k-means,以及一个估计器:卡尔曼滤波器。在所有情况下,特别是最后一种情况,代码提供了比其他语言(如Matlab)更概念化的方法来解决这些问题。还强调了正在开发的一些多芬功能,例如称为流的无限列表结构,其设计用于作为随机过程的自然表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信