Some Large Sample Results for the Method of Regularized Estimators

Michael Jansson, Demian Pouzo
{"title":"Some Large Sample Results for the Method of Regularized Estimators","authors":"Michael Jansson, Demian Pouzo","doi":"10.2139/SSRN.3090731","DOIUrl":null,"url":null,"abstract":"We present a general framework for studying regularized estimators; i.e., estimation problems wherein \"plug-in\" type estimators are either ill-defined or ill-behaved. We derive primitive conditions that imply consistency and asymptotic linear representation for regularized estimators, allowing for slower than $\\sqrt{n}$ estimators as well as infinite dimensional parameters. We also provide data-driven methods for choosing tuning parameters that, under some conditions, achieve the aforementioned results. We illustrate the scope of our approach by studying a wide range of applications, revisiting known results and deriving new ones.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/SSRN.3090731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We present a general framework for studying regularized estimators; i.e., estimation problems wherein "plug-in" type estimators are either ill-defined or ill-behaved. We derive primitive conditions that imply consistency and asymptotic linear representation for regularized estimators, allowing for slower than $\sqrt{n}$ estimators as well as infinite dimensional parameters. We also provide data-driven methods for choosing tuning parameters that, under some conditions, achieve the aforementioned results. We illustrate the scope of our approach by studying a wide range of applications, revisiting known results and deriving new ones.
正则化估计方法的一些大样本结果
我们提出了一个研究正则估计量的一般框架;例如,“插件”类型估计器要么定义不清,要么表现不佳的估计问题。我们推导了正则估计量的一致性和渐近线性表示的基本条件,允许慢于$\sqrt{n}$估计量以及无限维参数。我们还提供了数据驱动的方法来选择调优参数,这些参数在某些条件下可以达到上述结果。我们通过研究广泛的应用,重新审视已知的结果和得出新的结果来说明我们的方法的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信