{"title":"Hot carrier devices using novel alloys and substrates","authors":"J. Munday","doi":"10.1117/12.2594386","DOIUrl":null,"url":null,"abstract":"High conductivity metals have long been the material of choice for traditional electronics, and over the past two decades low-loss metals have led to many novel optical devices and structures as a result of plasmonic confinement. As these fields merge, metal optoelectronics using hot carrier effects may pave the way for new device architectures with improved flexibility, frequency response, and ultrafast time-dynamics. In this presentation, we will discuss our recent work building hot electron photodetectors for NIR detection using Si and metal oxides, improved response using nanoscale metal alloys, and time-resolved ultrafast detection via pump-probe techniques exploiting surface plasmon excitation. Further, we will show how the incorporation of index near zero (INZ) substrates can lead to nearly 100% absorption in thin metal films, providing a new platform for hot electron devices. We will conclude with an outlook and discuss future possibilities with these novel material systems.","PeriodicalId":118068,"journal":{"name":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasmonics: Design, Materials, Fabrication, Characterization, and Applications XIX","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High conductivity metals have long been the material of choice for traditional electronics, and over the past two decades low-loss metals have led to many novel optical devices and structures as a result of plasmonic confinement. As these fields merge, metal optoelectronics using hot carrier effects may pave the way for new device architectures with improved flexibility, frequency response, and ultrafast time-dynamics. In this presentation, we will discuss our recent work building hot electron photodetectors for NIR detection using Si and metal oxides, improved response using nanoscale metal alloys, and time-resolved ultrafast detection via pump-probe techniques exploiting surface plasmon excitation. Further, we will show how the incorporation of index near zero (INZ) substrates can lead to nearly 100% absorption in thin metal films, providing a new platform for hot electron devices. We will conclude with an outlook and discuss future possibilities with these novel material systems.