Tina Raissi, Wei Zhou, S. Berger, R. Schluter, H. Ney
{"title":"HMM vs. CTC for Automatic Speech Recognition: Comparison Based on Full-Sum Training from Scratch","authors":"Tina Raissi, Wei Zhou, S. Berger, R. Schluter, H. Ney","doi":"10.1109/SLT54892.2023.10022967","DOIUrl":null,"url":null,"abstract":"In this work, we compare from-scratch sequence-level cross-entropy (full-sum) training of Hidden Markov Model (HMM) and Connectionist Temporal Classification (CTC) topologies for automatic speech recognition (ASR). Besides accuracy, we further analyze their capability for generating high-quality time alignment between the speech signal and the transcription, which can be crucial for many subsequent applications. Moreover, we propose several methods to improve convergence of from-scratch full-sum training by addressing the alignment modeling issue. Systematic comparison is conducted on both Switchboard and LibriSpeech corpora across CTC, posterior HMM with and w/o transition probabilities, and standard hybrid HMM. We also provide a detailed analysis of both Viterbi forced-alignment and Baum-Welch full-sum occupation probabilities.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022967","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In this work, we compare from-scratch sequence-level cross-entropy (full-sum) training of Hidden Markov Model (HMM) and Connectionist Temporal Classification (CTC) topologies for automatic speech recognition (ASR). Besides accuracy, we further analyze their capability for generating high-quality time alignment between the speech signal and the transcription, which can be crucial for many subsequent applications. Moreover, we propose several methods to improve convergence of from-scratch full-sum training by addressing the alignment modeling issue. Systematic comparison is conducted on both Switchboard and LibriSpeech corpora across CTC, posterior HMM with and w/o transition probabilities, and standard hybrid HMM. We also provide a detailed analysis of both Viterbi forced-alignment and Baum-Welch full-sum occupation probabilities.