Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds

Xiaotian Hao, Lingzhong Zeng
{"title":"Eigenvalues of the bi-Xin-Laplacian on complete Riemannian manifolds","authors":"Xiaotian Hao, Lingzhong Zeng","doi":"10.3934/cam.2023009","DOIUrl":null,"url":null,"abstract":"The clamped plate problem describes the vibration of a clamped plate in the classical elastic mechanics, and the Xin-Laplacian is an important elliptic operator for understanding the geometric structure of translators of mean curvature flow(MCF for short). In this article, we investigate the clamped plate problem of the bi-Xin-Laplacian on Riemannian manifolds isometrically immersed in the Euclidean space. On one hand, we obtain some eigenvalue inequalities of the bi-Xin-Laplacian on some important Riemannian manifolds admitting some special functions. Let us emphasize that, this class of manifolds contains some interesting examples: Cartan-Hadamard manifolds, some types of warp product manifolds and homogenous spaces. On the other hand, we also consider the eigenvalue problem of the bi-Xin-Laplacian on the cylinders and obtain an eigenvalue inequality. In particular, we can give an estimate for the lower order eigenvalues on the cylinders.","PeriodicalId":233941,"journal":{"name":"Communications in Analysis and Mechanics","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Analysis and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cam.2023009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The clamped plate problem describes the vibration of a clamped plate in the classical elastic mechanics, and the Xin-Laplacian is an important elliptic operator for understanding the geometric structure of translators of mean curvature flow(MCF for short). In this article, we investigate the clamped plate problem of the bi-Xin-Laplacian on Riemannian manifolds isometrically immersed in the Euclidean space. On one hand, we obtain some eigenvalue inequalities of the bi-Xin-Laplacian on some important Riemannian manifolds admitting some special functions. Let us emphasize that, this class of manifolds contains some interesting examples: Cartan-Hadamard manifolds, some types of warp product manifolds and homogenous spaces. On the other hand, we also consider the eigenvalue problem of the bi-Xin-Laplacian on the cylinders and obtain an eigenvalue inequality. In particular, we can give an estimate for the lower order eigenvalues on the cylinders.
完全黎曼流形上的双辛拉普拉斯特征值
在经典弹性力学中,夹紧板问题描述的是夹紧板的振动问题,而辛-拉普拉斯算子是理解平均曲率流(MCF)的几何结构的重要椭圆算子。本文研究等距浸没于欧几里德空间的黎曼流形上的双辛-拉普拉斯夹板问题。一方面,我们在一些重要的黎曼流形上得到了双辛-拉普拉斯的特征值不等式。让我们强调一下,这类流形包含了一些有趣的例子:Cartan-Hadamard流形,某些类型的经积流形和齐次空间。另一方面,我们也考虑了柱面上的双辛拉普拉斯函数的特征值问题,得到了一个特征值不等式。特别地,我们可以给出柱体上的低阶特征值的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信