Detecting Abnormal Changes in E-mail Traffic Using Hierarchical Fuzzy Systems

Mark Jyn-Huey Lim, M. Negnevitsky, J. Hartnett
{"title":"Detecting Abnormal Changes in E-mail Traffic Using Hierarchical Fuzzy Systems","authors":"Mark Jyn-Huey Lim, M. Negnevitsky, J. Hartnett","doi":"10.1109/FUZZY.2007.4295556","DOIUrl":null,"url":null,"abstract":"E-mail traffic analysis is an area of work that focuses on extracting information about the behaviour of e-mail users based on the sender, receiver, and date/time information taken from the header section of e-mail messages. Such work has applications for law enforcement where investigators and analysts require techniques to assist them with finding unusual or suspicious patterns from large amounts of communication log data. This paper describes work using hierarchical fuzzy systems to detect abnormal changes in e-mail traffic behaviour, through the fusion of e-mail traffic behaviour measurements. The paper focuses on the use of three different hierarchical fuzzy system architectures, to determine the effect that input variable groupings have on the abnormality ratings given to the communication links of suspect e-mail accounts. The case study demonstrates the use of the three hierarchical fuzzy system architectures for analysing suspect e-mail accounts belonging to the Enron e-mail corpus.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

E-mail traffic analysis is an area of work that focuses on extracting information about the behaviour of e-mail users based on the sender, receiver, and date/time information taken from the header section of e-mail messages. Such work has applications for law enforcement where investigators and analysts require techniques to assist them with finding unusual or suspicious patterns from large amounts of communication log data. This paper describes work using hierarchical fuzzy systems to detect abnormal changes in e-mail traffic behaviour, through the fusion of e-mail traffic behaviour measurements. The paper focuses on the use of three different hierarchical fuzzy system architectures, to determine the effect that input variable groupings have on the abnormality ratings given to the communication links of suspect e-mail accounts. The case study demonstrates the use of the three hierarchical fuzzy system architectures for analysing suspect e-mail accounts belonging to the Enron e-mail corpus.
利用层次模糊系统检测电子邮件流量的异常变化
电子邮件流量分析是一个工作领域,其重点是根据从电子邮件消息的标题部分获取的发件人、接收者和日期/时间信息提取有关电子邮件用户行为的信息。这种工作适用于执法部门,调查人员和分析人员需要技术来帮助他们从大量通信日志数据中发现不寻常或可疑的模式。本文描述了通过融合电子邮件流量行为测量,使用层次模糊系统检测电子邮件流量行为异常变化的工作。本文着重于使用三种不同的层次模糊系统架构,以确定输入变量分组对可疑电子邮件帐户通信链接的异常评级的影响。案例研究演示了使用三个层次模糊系统架构来分析属于安然电子邮件语料库的可疑电子邮件帐户。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信