A Generative Model for Raw Audio Using Transformer Architectures

Prateek Verma, C. Chafe
{"title":"A Generative Model for Raw Audio Using Transformer Architectures","authors":"Prateek Verma, C. Chafe","doi":"10.23919/DAFx51585.2021.9768298","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel way of doing audio synthesis at the waveform level using Transformer architectures. We propose a deep neural network for generating waveforms, similar to wavenet [1]. This is fully probabilistic, auto-regressive, and causal, i.e. each sample generated depends on only the previously observed samples. Our approach outperforms a widely used wavenet architecture by up to 9% on a similar dataset for predicting the next step. Using the attention mechanism, we enable the architecture to learn which audio samples are important for the prediction of the future sample. We show how causal transformer generative models can be used for raw waveform synthesis. We also show that this performance can be improved by another 2% by conditioning samples over a wider context. The flexibility of the current model to synthesize audio from latent representations suggests a large number of potential applications. The novel approach of using generative transformer architectures for raw audio synthesis is, however, still far away from generating any meaningful music similar to wavenet, without using latent codes/meta-data to aid the generation process.","PeriodicalId":221170,"journal":{"name":"2021 24th International Conference on Digital Audio Effects (DAFx)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 24th International Conference on Digital Audio Effects (DAFx)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DAFx51585.2021.9768298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper proposes a novel way of doing audio synthesis at the waveform level using Transformer architectures. We propose a deep neural network for generating waveforms, similar to wavenet [1]. This is fully probabilistic, auto-regressive, and causal, i.e. each sample generated depends on only the previously observed samples. Our approach outperforms a widely used wavenet architecture by up to 9% on a similar dataset for predicting the next step. Using the attention mechanism, we enable the architecture to learn which audio samples are important for the prediction of the future sample. We show how causal transformer generative models can be used for raw waveform synthesis. We also show that this performance can be improved by another 2% by conditioning samples over a wider context. The flexibility of the current model to synthesize audio from latent representations suggests a large number of potential applications. The novel approach of using generative transformer architectures for raw audio synthesis is, however, still far away from generating any meaningful music similar to wavenet, without using latent codes/meta-data to aid the generation process.
使用变压器架构的原始音频生成模型
本文提出了一种使用Transformer架构在波形级进行音频合成的新方法。我们提出了一种用于产生波形的深度神经网络,类似于wavenet[1]。这是完全概率的、自回归的和因果的,即每个生成的样本只依赖于以前观察到的样本。我们的方法在预测下一步的类似数据集上比广泛使用的波网架构高出9%。使用注意机制,我们使架构能够学习哪些音频样本对未来样本的预测是重要的。我们展示了因果变压器生成模型如何用于原始波形合成。我们还表明,通过在更广泛的背景下调节样本,这种性能可以再提高2%。当前模型从潜在表示合成音频的灵活性表明了大量潜在的应用。然而,如果不使用潜在代码/元数据来辅助生成过程,使用生成转换器架构进行原始音频合成的新方法仍然远不能产生任何类似于波网络的有意义的音乐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信