ProvBuild

Jingmei Hu, Jiwon Joung, Maia L. Jacobs, Krzysztof Z Gajos, M. Seltzer
{"title":"ProvBuild","authors":"Jingmei Hu, Jiwon Joung, Maia L. Jacobs, Krzysztof Z Gajos, M. Seltzer","doi":"10.1145/3377812.3390912","DOIUrl":null,"url":null,"abstract":"Data scientists frequently analyze data by writing scripts. We conducted a contextual inquiry with interdisciplinary researchers, which revealed that parameter tuning is a highly iterative process and that debugging is time-consuming. As analysis scripts evolve and become more complex, analysts have difficulty conceptualizing their workflow. In particular, after editing a script, it becomes difficult to determine precisely which code blocks depend on the edit. Consequently, scientists frequently re-run entire scripts instead of re-running only the necessary parts. We present ProvBuild, a data analysis environment that uses change impact analysis [1] to improve the iterative debugging process in script-based workflow pipelines. ProvBuild is a tool that leverages language-level provenance [2] to streamline the debugging process by reducing programmer cognitive load and decreasing subsequent runtimes, leading to an overall reduction in elapsed debugging time. ProvBuild uses provenance to track dependencies in a script. When an analyst debugs a script, ProvBuild generates a simplified script that contains only the information necessary to debug a particular problem. We demonstrate that debugging the simplified script lowers a programmer's cognitive load and permits faster re-execution when testing changes. The combination of reduced cognitive load and shorter runtime reduces the time necessary to debug a script. We quantitatively and qualitatively show that even though ProvBuild introduces overhead during a script's first execution, it is a more efficient way for users to debug and tune complex workflows. ProvBuild demonstrates a novel use of language-level provenance, in which it is used to proactively improve programmer productively rather than merely providing a way to retroactively gain insight into a body of code. To the best of our knowledge, ProvBuild is a novel application of change impact analysis and it is the first debugging tool to leverage language-level provenance to reduce cognitive load and execution time.","PeriodicalId":421517,"journal":{"name":"Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings","volume":"373 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377812.3390912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data scientists frequently analyze data by writing scripts. We conducted a contextual inquiry with interdisciplinary researchers, which revealed that parameter tuning is a highly iterative process and that debugging is time-consuming. As analysis scripts evolve and become more complex, analysts have difficulty conceptualizing their workflow. In particular, after editing a script, it becomes difficult to determine precisely which code blocks depend on the edit. Consequently, scientists frequently re-run entire scripts instead of re-running only the necessary parts. We present ProvBuild, a data analysis environment that uses change impact analysis [1] to improve the iterative debugging process in script-based workflow pipelines. ProvBuild is a tool that leverages language-level provenance [2] to streamline the debugging process by reducing programmer cognitive load and decreasing subsequent runtimes, leading to an overall reduction in elapsed debugging time. ProvBuild uses provenance to track dependencies in a script. When an analyst debugs a script, ProvBuild generates a simplified script that contains only the information necessary to debug a particular problem. We demonstrate that debugging the simplified script lowers a programmer's cognitive load and permits faster re-execution when testing changes. The combination of reduced cognitive load and shorter runtime reduces the time necessary to debug a script. We quantitatively and qualitatively show that even though ProvBuild introduces overhead during a script's first execution, it is a more efficient way for users to debug and tune complex workflows. ProvBuild demonstrates a novel use of language-level provenance, in which it is used to proactively improve programmer productively rather than merely providing a way to retroactively gain insight into a body of code. To the best of our knowledge, ProvBuild is a novel application of change impact analysis and it is the first debugging tool to leverage language-level provenance to reduce cognitive load and execution time.
ProvBuild
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信