Sleep Stress Level Classification through Machine Learning Algorithms

Abhyudaya Batabyal, Vinay Singh, Mahendra Kumar Gourisaria, Himansu Das
{"title":"Sleep Stress Level Classification through Machine Learning Algorithms","authors":"Abhyudaya Batabyal, Vinay Singh, Mahendra Kumar Gourisaria, Himansu Das","doi":"10.1109/OCIT56763.2022.00027","DOIUrl":null,"url":null,"abstract":"Nowadays, chronic insomnia is a critical problem of homo-sapiens. An increase in workload and tension in life led to the development of sleep stress. Sleep stress can damage human beings in a physical, psychological, and social manner. Sickness in the stomach, tension, and frayed nerves while sleeping are the most frequent symptoms of sleep stress. Sleep stress can lead to cardiac infarction, depression, senile psychosis, gastrointestinal problems, diabetes, obesity, and emphysematous. This paper primarily focuses on the classification of sleep stress levels using standard machine learning algorithms like Decision Tree (DT), Logistic Regression (LR), Radial basis function Supported-Vector Classifier (RBF-SVC), K-Nearest Neighbor (KNN), Random Forest (RF), Extreme Gradient Boosting (XGB), Linear Support-Vector Classifier (L-SVC), Naive Bayes (NB), Support-Vector Classifier (SVC), on the scaled dataset using Standard Scaling. LR, KNN, and SVC outperformed all the other machine learning classifiers in terms of performance metrics.","PeriodicalId":425541,"journal":{"name":"2022 OITS International Conference on Information Technology (OCIT)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 OITS International Conference on Information Technology (OCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCIT56763.2022.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Nowadays, chronic insomnia is a critical problem of homo-sapiens. An increase in workload and tension in life led to the development of sleep stress. Sleep stress can damage human beings in a physical, psychological, and social manner. Sickness in the stomach, tension, and frayed nerves while sleeping are the most frequent symptoms of sleep stress. Sleep stress can lead to cardiac infarction, depression, senile psychosis, gastrointestinal problems, diabetes, obesity, and emphysematous. This paper primarily focuses on the classification of sleep stress levels using standard machine learning algorithms like Decision Tree (DT), Logistic Regression (LR), Radial basis function Supported-Vector Classifier (RBF-SVC), K-Nearest Neighbor (KNN), Random Forest (RF), Extreme Gradient Boosting (XGB), Linear Support-Vector Classifier (L-SVC), Naive Bayes (NB), Support-Vector Classifier (SVC), on the scaled dataset using Standard Scaling. LR, KNN, and SVC outperformed all the other machine learning classifiers in terms of performance metrics.
基于机器学习算法的睡眠压力水平分类
如今,慢性失眠是人类的一个严重问题。工作量的增加和生活中的紧张导致了睡眠压力的发展。睡眠压力会对人的身体、心理和社会造成损害。睡觉时胃部不适、紧张和神经紧张是睡眠压力最常见的症状。睡眠压力会导致心脏病、抑郁症、老年性精神病、胃肠道问题、糖尿病、肥胖和肺气肿。本文主要关注使用标准机器学习算法(如决策树(DT),逻辑回归(LR),径向基函数支持向量分类器(RBF-SVC), k -近邻(KNN),随机森林(RF),极端梯度增强(XGB),线性支持向量分类器(L-SVC),朴素贝叶斯(NB),支持向量分类器(SVC))对使用标准缩放的缩放数据集进行睡眠压力水平分类。在性能指标方面,LR、KNN和SVC优于所有其他机器学习分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信