{"title":"A 105Gb/s Dielectric-Waveguide Link in 130nm BiCMOS Using Channelized 220-to-335GHz Signal and Integrated Waveguide Coupler","authors":"J. Holloway, G. Dogiamis, R. Han","doi":"10.1109/ISSCC42613.2021.9365857","DOIUrl":null,"url":null,"abstract":"The rapid surge of data transmission within computation, storage and communication infrastructures is pushing the speed boundary of traditional copper-based electrical links. Recent realizations of l00Gb/s wired links require advanced FinFET technologies, highcost packaging/cables and power-consuming equalization. High-frequency waves over dielectric waveguides have been considered as an alternative solution that exploits the low-loss, broadband medium while maintaining compatibility with existing silicon 1C platforms. However, since its debut in 2011 [1], this scheme, previously using $\\leq 140\\mathrm{G}\\mathrm{H}\\mathrm{z}$ carriers, has only achieved data rates of up to 36Gb/s[2]. lt is expected that higher carrier frequencies (e.g. >200GHz) and multi-channel aggregation would further increase the data rate while shrinking the interconnect size; but that scheme has been hindered by challenges related to the required high-order multiplexer and ultra-broadband waveguide coupler operating efficiently at sub terahertz (sub-THz) frequencies. in this paper, using a 130nmSiGe BiCMOS technology, we present a multi-channel, multiplexer/coupler-integrated transmitter (Tx) that delivers a data rate of $105\\mathrm{G}\\mathrm{b}/\\mathrm{s}(3\\times 35\\mathrm{G}\\mathrm{b}/\\mathrm{s})$. To demodulate each channel, a 35Gb/s coupler-integrated receiver (Rx) is also developed. Ourlink, including the chipset and a 0. 4mm-wide, 30cm-long dielectric ribbon, experimentally demonstrates the potential speed, efficiency, size and cost advantages of THz fiber links in high-speed inter-server and backplane fabrics.","PeriodicalId":371093,"journal":{"name":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Solid- State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC42613.2021.9365857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
The rapid surge of data transmission within computation, storage and communication infrastructures is pushing the speed boundary of traditional copper-based electrical links. Recent realizations of l00Gb/s wired links require advanced FinFET technologies, highcost packaging/cables and power-consuming equalization. High-frequency waves over dielectric waveguides have been considered as an alternative solution that exploits the low-loss, broadband medium while maintaining compatibility with existing silicon 1C platforms. However, since its debut in 2011 [1], this scheme, previously using $\leq 140\mathrm{G}\mathrm{H}\mathrm{z}$ carriers, has only achieved data rates of up to 36Gb/s[2]. lt is expected that higher carrier frequencies (e.g. >200GHz) and multi-channel aggregation would further increase the data rate while shrinking the interconnect size; but that scheme has been hindered by challenges related to the required high-order multiplexer and ultra-broadband waveguide coupler operating efficiently at sub terahertz (sub-THz) frequencies. in this paper, using a 130nmSiGe BiCMOS technology, we present a multi-channel, multiplexer/coupler-integrated transmitter (Tx) that delivers a data rate of $105\mathrm{G}\mathrm{b}/\mathrm{s}(3\times 35\mathrm{G}\mathrm{b}/\mathrm{s})$. To demodulate each channel, a 35Gb/s coupler-integrated receiver (Rx) is also developed. Ourlink, including the chipset and a 0. 4mm-wide, 30cm-long dielectric ribbon, experimentally demonstrates the potential speed, efficiency, size and cost advantages of THz fiber links in high-speed inter-server and backplane fabrics.