Decreasing the Computational Demand of Unscented Kalman Filter based Methods

József Kuti, P. Galambos
{"title":"Decreasing the Computational Demand of Unscented Kalman Filter based Methods","authors":"József Kuti, P. Galambos","doi":"10.1109/SACI51354.2021.9465610","DOIUrl":null,"url":null,"abstract":"Computational load is a critical factor in sensor fusion applications especially in mobile devices (e.g., robots, drones, etc.) with limited resources onboard. The paper proposes a computational relaxation for the Unscented Transformation (UT) that is an essential part of the Unscented Kalman-filter based applications. The derivation for the most commonly used UT variant is presented and it is shown how the number of necessary sigma points is reduced. The practical merit of the proposed relaxation is demonstrated through a mobile robot localization example that clearly shows the benefit in terms of CPU time.","PeriodicalId":321907,"journal":{"name":"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SACI51354.2021.9465610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Computational load is a critical factor in sensor fusion applications especially in mobile devices (e.g., robots, drones, etc.) with limited resources onboard. The paper proposes a computational relaxation for the Unscented Transformation (UT) that is an essential part of the Unscented Kalman-filter based applications. The derivation for the most commonly used UT variant is presented and it is shown how the number of necessary sigma points is reduced. The practical merit of the proposed relaxation is demonstrated through a mobile robot localization example that clearly shows the benefit in terms of CPU time.
减少基于无气味卡尔曼滤波方法的计算量
计算负载是传感器融合应用中的一个关键因素,特别是在机载资源有限的移动设备(如机器人、无人机等)中。本文提出了Unscented变换(UT)的计算松弛,UT是基于Unscented卡尔曼滤波的应用的重要组成部分。给出了最常用的UT变量的推导,并展示了如何减少必要的西格玛点的数量。通过一个移动机器人定位的例子,可以清楚地看到这种方法在CPU时间方面的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信