{"title":"Finding the hidden path: time bounds for all-pairs shortest paths","authors":"David R Karger, D. Koller, S. Phillips","doi":"10.1109/SFCS.1991.185419","DOIUrl":null,"url":null,"abstract":"The all-pairs shortest paths problem in weighted graphs is investigated. An algorithm called the hidden paths algorithm, which finds these paths in time O(m*+n n/sup 2/ log n), where m* is the number of edges participating in shortest paths, is presented. It is argued that m* is likely to be small in practice, since m*=O(n log n) with high probability for many probability distributions on edge weights. An Omega (mn) lower bound on the running time of any path-comparison-based algorithm for the all-pairs shortest paths problem is proved.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"120 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"143","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 143
Abstract
The all-pairs shortest paths problem in weighted graphs is investigated. An algorithm called the hidden paths algorithm, which finds these paths in time O(m*+n n/sup 2/ log n), where m* is the number of edges participating in shortest paths, is presented. It is argued that m* is likely to be small in practice, since m*=O(n log n) with high probability for many probability distributions on edge weights. An Omega (mn) lower bound on the running time of any path-comparison-based algorithm for the all-pairs shortest paths problem is proved.<>