{"title":"Neural inverse optimal control applied to design therapeutic options for patients with COVID-19","authors":"V. Chan, E. Hernández-Vargas, E. Sánchez","doi":"10.1109/IJCNN52387.2021.9534240","DOIUrl":null,"url":null,"abstract":"In this paper we apply an inverse optimal controller (IOC) based on a control Lyapunov function (CLF) to schedule theoretical therapies for the novel coronavirus disease (COVID-19). This controller can represent the viral dynamics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host. The virus dynamics consider the antiviral effects and immune responses as control inputs. The proposed controller is based on a Recurrent High Order Neural Network (RHONN) used as an identifier trained with Extended Kalman Filter (EKF). Simulations show that applying treatment 2 days post symptoms would not significantly alter the viral load. The proposed controller to stimulate the immune response displays a better effectiveness compared to the effectiveness displayed by the antiviral effects.","PeriodicalId":396583,"journal":{"name":"2021 International Joint Conference on Neural Networks (IJCNN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN52387.2021.9534240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we apply an inverse optimal controller (IOC) based on a control Lyapunov function (CLF) to schedule theoretical therapies for the novel coronavirus disease (COVID-19). This controller can represent the viral dynamics of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in the host. The virus dynamics consider the antiviral effects and immune responses as control inputs. The proposed controller is based on a Recurrent High Order Neural Network (RHONN) used as an identifier trained with Extended Kalman Filter (EKF). Simulations show that applying treatment 2 days post symptoms would not significantly alter the viral load. The proposed controller to stimulate the immune response displays a better effectiveness compared to the effectiveness displayed by the antiviral effects.