An Innovative Method for Housing Price Prediction using Least Square - SVM

Yasha Goel, A. N. Swaminathen, Rishika Yadav, B. Kanthamma, Ravi Kant, Amit Chauhan
{"title":"An Innovative Method for Housing Price Prediction using Least Square - SVM","authors":"Yasha Goel, A. N. Swaminathen, Rishika Yadav, B. Kanthamma, Ravi Kant, Amit Chauhan","doi":"10.1109/ICESC57686.2023.10193369","DOIUrl":null,"url":null,"abstract":"The House Price Prediction is often employed to forecast housing market shifts. Individual house prices cannot be predicted using HPI alone due to the substantial correlation between housing price and other characteristics like location, area, and population. While several articles have used conventional machine learning methods to predict housing prices, these methods tend to focus on the market as a whole rather than on the performance of individual models. In addition, good data pretreatment methods are intended to be established to boost the precision of machine learning algorithms. The data is normalized and put to use. Features are selected using the correlation coefficient, and LSSVM is employed for model training. The proposed approach outperforms other models such as CNN and SVM.","PeriodicalId":235381,"journal":{"name":"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESC57686.2023.10193369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The House Price Prediction is often employed to forecast housing market shifts. Individual house prices cannot be predicted using HPI alone due to the substantial correlation between housing price and other characteristics like location, area, and population. While several articles have used conventional machine learning methods to predict housing prices, these methods tend to focus on the market as a whole rather than on the performance of individual models. In addition, good data pretreatment methods are intended to be established to boost the precision of machine learning algorithms. The data is normalized and put to use. Features are selected using the correlation coefficient, and LSSVM is employed for model training. The proposed approach outperforms other models such as CNN and SVM.
一种基于最小二乘支持向量机的房价预测新方法
房价预测经常被用来预测房地产市场的变化。由于房价与地理位置、面积和人口等其他特征之间存在实质性的相关性,因此单独使用HPI无法预测个别房价。虽然有几篇文章使用传统的机器学习方法来预测房价,但这些方法往往侧重于整个市场,而不是单个模型的表现。此外,还希望建立良好的数据预处理方法,以提高机器学习算法的精度。数据被规范化并投入使用。利用相关系数选择特征,利用LSSVM进行模型训练。该方法优于CNN和SVM等其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信