Yasha Goel, A. N. Swaminathen, Rishika Yadav, B. Kanthamma, Ravi Kant, Amit Chauhan
{"title":"An Innovative Method for Housing Price Prediction using Least Square - SVM","authors":"Yasha Goel, A. N. Swaminathen, Rishika Yadav, B. Kanthamma, Ravi Kant, Amit Chauhan","doi":"10.1109/ICESC57686.2023.10193369","DOIUrl":null,"url":null,"abstract":"The House Price Prediction is often employed to forecast housing market shifts. Individual house prices cannot be predicted using HPI alone due to the substantial correlation between housing price and other characteristics like location, area, and population. While several articles have used conventional machine learning methods to predict housing prices, these methods tend to focus on the market as a whole rather than on the performance of individual models. In addition, good data pretreatment methods are intended to be established to boost the precision of machine learning algorithms. The data is normalized and put to use. Features are selected using the correlation coefficient, and LSSVM is employed for model training. The proposed approach outperforms other models such as CNN and SVM.","PeriodicalId":235381,"journal":{"name":"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Electronics and Sustainable Communication Systems (ICESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICESC57686.2023.10193369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The House Price Prediction is often employed to forecast housing market shifts. Individual house prices cannot be predicted using HPI alone due to the substantial correlation between housing price and other characteristics like location, area, and population. While several articles have used conventional machine learning methods to predict housing prices, these methods tend to focus on the market as a whole rather than on the performance of individual models. In addition, good data pretreatment methods are intended to be established to boost the precision of machine learning algorithms. The data is normalized and put to use. Features are selected using the correlation coefficient, and LSSVM is employed for model training. The proposed approach outperforms other models such as CNN and SVM.