PACE: Prediction-based Annotation for Crowded Environments

F. Bartoli, G. Lisanti, Lorenzo Seidenari, A. Bimbo
{"title":"PACE: Prediction-based Annotation for Crowded Environments","authors":"F. Bartoli, G. Lisanti, Lorenzo Seidenari, A. Bimbo","doi":"10.1145/3078971.3079020","DOIUrl":null,"url":null,"abstract":"We present a new tool we have developed to ease the annotation of crowded environments, typical of visual surveillance datasets. Our tool is developed using HTML5 and Javascript and has two back-ends. A PHP based back-end implement the persistence using a relational database and manage the dynamic creation of pages and the authentication procedure. A python based REST server implement all the computer vision facilities to assist annotators. Our tool allows collaborative annotation of person identity, group membership, location, gaze and occluded parts. PACE supports multiple cameras and if calibration is provided the geometry is used to improve computer vision based assistance. We detail the whole interface comprising an administrative view that ease the setup of the system.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3079020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a new tool we have developed to ease the annotation of crowded environments, typical of visual surveillance datasets. Our tool is developed using HTML5 and Javascript and has two back-ends. A PHP based back-end implement the persistence using a relational database and manage the dynamic creation of pages and the authentication procedure. A python based REST server implement all the computer vision facilities to assist annotators. Our tool allows collaborative annotation of person identity, group membership, location, gaze and occluded parts. PACE supports multiple cameras and if calibration is provided the geometry is used to improve computer vision based assistance. We detail the whole interface comprising an administrative view that ease the setup of the system.
面向拥挤环境的基于预测的注释
我们提出了一个我们开发的新工具,以简化拥挤环境的注释,典型的视觉监控数据集。我们的工具是使用HTML5和Javascript开发的,有两个后端。基于PHP的后端使用关系数据库实现持久性,并管理页面的动态创建和身份验证过程。一个基于python的REST服务器实现了所有的计算机视觉工具来帮助注释者。我们的工具允许对个人身份、群组成员、位置、凝视和遮挡部分进行协作注释。PACE支持多个摄像头,如果提供了校准,则可以使用几何形状来改进基于计算机视觉的辅助。我们详细介绍了整个界面,包括简化系统设置的管理视图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信