The completeness of isomorphism

S. Friedman
{"title":"The completeness of isomorphism","authors":"S. Friedman","doi":"10.1515/9781614518044.157","DOIUrl":null,"url":null,"abstract":"In classical descriptive set theory, analytic equivalence relations (i.e., Σ1 equivalence relations with parameters) are compared under the relation of Borel reducibility (for example, see [5]). An important subclass of the Σ1 equivalence relations are the isomorphism relations, i.e., the restrictions of the isomorphism relation on countable structures (viewed as an equivalence relation on reals coding such structures) to the models of a sentence of the infinitary logic Lω1ω. Scott’s Theorem implies that the equivalence classes of any isomorphism relation are Borel, and therefore no isomorphism relation can be complete (under Borel reducibility) within the class of Σ1 equivalence relations as a whole, some of which contain non-Borel equivalence classes. (This is clarified below.)","PeriodicalId":359337,"journal":{"name":"Logic, Computation, Hierarchies","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Logic, Computation, Hierarchies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/9781614518044.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In classical descriptive set theory, analytic equivalence relations (i.e., Σ1 equivalence relations with parameters) are compared under the relation of Borel reducibility (for example, see [5]). An important subclass of the Σ1 equivalence relations are the isomorphism relations, i.e., the restrictions of the isomorphism relation on countable structures (viewed as an equivalence relation on reals coding such structures) to the models of a sentence of the infinitary logic Lω1ω. Scott’s Theorem implies that the equivalence classes of any isomorphism relation are Borel, and therefore no isomorphism relation can be complete (under Borel reducibility) within the class of Σ1 equivalence relations as a whole, some of which contain non-Borel equivalence classes. (This is clarified below.)
同构的完备性
在经典描述集合论中,在Borel可约关系下比较解析等价关系(即Σ1与参数的等价关系)(例如,参见[5])。Σ1等价关系的一个重要子类是同构关系,即可数结构上的同构关系(看作是实数编码结构上的等价关系)对无限逻辑Lω1ω的句子模型的限制。Scott定理表明任何同构关系的等价类都是Borel,因此在整个Σ1等价关系类中没有一个同构关系是完备的(在Borel可约性下),其中一些包含非Borel等价类。(下文将对此进行澄清。)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信