F. Ren, Weizong Xu, Hai Lu, Jiandong Ye, H. Tan, C. Jagadish
{"title":"Dynamic control of THz waves through thin-film transistor metamaterials","authors":"F. Ren, Weizong Xu, Hai Lu, Jiandong Ye, H. Tan, C. Jagadish","doi":"10.1117/12.2202359","DOIUrl":null,"url":null,"abstract":"We propose a hybrid metamaterial with embedded amorphous oxide thin-film transistor (TFT) arrays, which embraces the advantages of energy saving, low cost and high yields for tunable amplitude modulation in terahertz (THz) regime. The properties of this active metamaterial system are numerically investigated based on full-wave techniques and multipole theory. The calculation results attribute the modulation to a change in the damping rate of an electric dipoletype resonance mode caused by the increased conductivity of the transparent oxide layer. Such a device, expanding the horizon of oxide electronics into metamaterials, opens up many fascinating prospects for producing stable, uniform, and low-cost THz components.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"511 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2202359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a hybrid metamaterial with embedded amorphous oxide thin-film transistor (TFT) arrays, which embraces the advantages of energy saving, low cost and high yields for tunable amplitude modulation in terahertz (THz) regime. The properties of this active metamaterial system are numerically investigated based on full-wave techniques and multipole theory. The calculation results attribute the modulation to a change in the damping rate of an electric dipoletype resonance mode caused by the increased conductivity of the transparent oxide layer. Such a device, expanding the horizon of oxide electronics into metamaterials, opens up many fascinating prospects for producing stable, uniform, and low-cost THz components.