NACER: A Network-Aware Cost-Efficient Resource Allocation Method for Processing-Intensive Tasks in Distributed Clouds

E. Ahvar, S. Ahvar, N. Crespi, Joaquín García, Z. Mann
{"title":"NACER: A Network-Aware Cost-Efficient Resource Allocation Method for Processing-Intensive Tasks in Distributed Clouds","authors":"E. Ahvar, S. Ahvar, N. Crespi, Joaquín García, Z. Mann","doi":"10.1109/NCA.2015.37","DOIUrl":null,"url":null,"abstract":"In the distributed cloud paradigm, data centers are geographically dispersed and interconnected over a wide-area network. Due to the geographical distribution of data centers, communication networks play an important role in distributed clouds in terms of communication cost and QoS. Large-scale, processing-intensive tasks require the cooperation of many VMs, which may be distributed in more than one data center and should communicate with each other. In this setting, the number of data enters serving the given task and the network distance among those data centers have critical impact on the communication cost, traffic and even completion time of the task. In this paper, we present the NACER algorithm, a Network-Aware Cost-Efficient Resource allocation method for optimizing the placement of largemulti-VM tasks in distributed clouds. NACER builds on ideas of the A* search algorithm from Artificial Intelligence research in order to obtain better results than typical greedy heuristics. We present extensive simulation results to compare the performance of NACER with competing heuristics and show its effectiveness.","PeriodicalId":222162,"journal":{"name":"2015 IEEE 14th International Symposium on Network Computing and Applications","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 14th International Symposium on Network Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCA.2015.37","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In the distributed cloud paradigm, data centers are geographically dispersed and interconnected over a wide-area network. Due to the geographical distribution of data centers, communication networks play an important role in distributed clouds in terms of communication cost and QoS. Large-scale, processing-intensive tasks require the cooperation of many VMs, which may be distributed in more than one data center and should communicate with each other. In this setting, the number of data enters serving the given task and the network distance among those data centers have critical impact on the communication cost, traffic and even completion time of the task. In this paper, we present the NACER algorithm, a Network-Aware Cost-Efficient Resource allocation method for optimizing the placement of largemulti-VM tasks in distributed clouds. NACER builds on ideas of the A* search algorithm from Artificial Intelligence research in order to obtain better results than typical greedy heuristics. We present extensive simulation results to compare the performance of NACER with competing heuristics and show its effectiveness.
NACER:分布式云中处理密集型任务的一种网络感知、成本高效的资源分配方法
在分布式云范例中,数据中心在地理上是分散的,并通过广域网相互连接。由于数据中心的地理分布,通信网络在通信成本和QoS方面在分布式云中扮演着重要的角色。大规模的、处理密集型的任务需要许多虚拟机的协作,这些虚拟机可能分布在多个数据中心,并且需要相互通信。在这种情况下,服务于给定任务的数据入口数量以及这些数据中心之间的网络距离对任务的通信成本、流量甚至完成时间都有至关重要的影响。在本文中,我们提出了NACER算法,这是一种网络感知的成本效益资源分配方法,用于优化分布式云中大型多虚拟机任务的放置。NACER基于人工智能研究中的A*搜索算法的思想,以获得比典型的贪婪启发式更好的结果。我们提供了大量的仿真结果来比较NACER与竞争启发式算法的性能并显示其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信