Plaster

Jason Koh, Dezhi Hong, Rajesh Gupta, K. Whitehouse, Hongning Wang, Yuvraj Agarwal
{"title":"Plaster","authors":"Jason Koh, Dezhi Hong, Rajesh Gupta, K. Whitehouse, Hongning Wang, Yuvraj Agarwal","doi":"10.1145/3276774.3276794","DOIUrl":null,"url":null,"abstract":"The recent advances in the automation of metadata normalization and the invention of a unified schema --- Brick --- alleviate the metadata normalization challenge for deploying portable applications across buildings. Yet, the lack of compatibility between existing metadata normalization methods precludes the possibility of comparing and combining them. While generic machine learning (ML) frameworks, such as MLJAR and OpenML, provide versatile interfaces for standard ML problems, they cannot easily accommodate the metadata normalization tasks for buildings due to the heterogeneity in the inference scope, type of data required as input, evaluation metric, and the building-specific human-in-the-loop learning procedure. We propose Plaster, an open and modular framework that incorporates existing advances in building metadata normalization. It provides unified programming interfaces for various types of learning methods for metadata normalization and defines standardized data models for building metadata and timeseries data. Thus, it enables the integration of different methods via a workflow, benchmarking of different methods via unified interfaces, and rapid prototyping of new algorithms. With Plaster, we 1) show three examples of the workflow integration, delivering better performance than individual algorithms, 2) benchmark/analyze five algorithms over five common buildings, and 3) exemplify the process of developing a new algorithm involving time series features. We believe Plaster will facilitate the development of new algorithms and expedite the adoption of standard metadata schema such as Brick, in order to enable seamless smart building applications in the future.","PeriodicalId":294697,"journal":{"name":"Proceedings of the 5th Conference on Systems for Built Environments","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th Conference on Systems for Built Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3276774.3276794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The recent advances in the automation of metadata normalization and the invention of a unified schema --- Brick --- alleviate the metadata normalization challenge for deploying portable applications across buildings. Yet, the lack of compatibility between existing metadata normalization methods precludes the possibility of comparing and combining them. While generic machine learning (ML) frameworks, such as MLJAR and OpenML, provide versatile interfaces for standard ML problems, they cannot easily accommodate the metadata normalization tasks for buildings due to the heterogeneity in the inference scope, type of data required as input, evaluation metric, and the building-specific human-in-the-loop learning procedure. We propose Plaster, an open and modular framework that incorporates existing advances in building metadata normalization. It provides unified programming interfaces for various types of learning methods for metadata normalization and defines standardized data models for building metadata and timeseries data. Thus, it enables the integration of different methods via a workflow, benchmarking of different methods via unified interfaces, and rapid prototyping of new algorithms. With Plaster, we 1) show three examples of the workflow integration, delivering better performance than individual algorithms, 2) benchmark/analyze five algorithms over five common buildings, and 3) exemplify the process of developing a new algorithm involving time series features. We believe Plaster will facilitate the development of new algorithms and expedite the adoption of standard metadata schema such as Brick, in order to enable seamless smart building applications in the future.
石膏
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信