Fast Sorting and Pattern-avoiding Permutations

David Arthur
{"title":"Fast Sorting and Pattern-avoiding Permutations","authors":"David Arthur","doi":"10.1137/1.9781611972979.1","DOIUrl":null,"url":null,"abstract":"We say a permutation π \"avoids\" a pattern σ if no length |σ| subsequence of π is ordered in precisely the same way as σ. For example, π avoids (1, 2, 3) if it contains no increasing subsequence of length three. It was recently shown by Marcus and Tardos that the number of permutations of length n avoiding any fixed pattern is at most exponential in n. This suggests the possibility that if π is known a priori to avoid a fixed pattern, it may be possible to sort π in as little as linear time. Fully resolving this possibility seems very challenging, but in this paper, we demonstrate a large class of patterns σ for which σ-avoiding permutations can be sorted in O(n log log log n) time.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972979.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We say a permutation π "avoids" a pattern σ if no length |σ| subsequence of π is ordered in precisely the same way as σ. For example, π avoids (1, 2, 3) if it contains no increasing subsequence of length three. It was recently shown by Marcus and Tardos that the number of permutations of length n avoiding any fixed pattern is at most exponential in n. This suggests the possibility that if π is known a priori to avoid a fixed pattern, it may be possible to sort π in as little as linear time. Fully resolving this possibility seems very challenging, but in this paper, we demonstrate a large class of patterns σ for which σ-avoiding permutations can be sorted in O(n log log log n) time.
快速排序和避免模式排列
如果π的子序列与σ的顺序完全相同,那么我们说一个排列π“避免”了一个模式σ。例如,π避免(1,2,3),如果它不包含长度为3的递增子序列。Marcus和Tardos最近表明,长度为n的排列的数量最多是n的指数。这表明,如果π是先验的,可以避免固定的模式,那么在线性时间内就可以对π进行排序。完全解决这种可能性似乎非常具有挑战性,但在本文中,我们展示了一大类模式σ,其中σ-避免排列可以在O(n log log log n)时间内排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信