A learning control scheme based on neural networks for repeatable robot trajectory tracking

Jizhong Xiao, Q. Song, Danwei W. Wang
{"title":"A learning control scheme based on neural networks for repeatable robot trajectory tracking","authors":"Jizhong Xiao, Q. Song, Danwei W. Wang","doi":"10.1109/ISIC.1999.796638","DOIUrl":null,"url":null,"abstract":"This paper presents an iterative learning controller using neural network (NN) for the robot trajectory tracking control. The basic control configuration is briefly presented and a new weight-tuning algorithm of NN is proposed with a dead-zone technique. Theoretical proof is given which shows that our modified algorithm guarantees the convergence of NN estimation error in the presence of disturbance. The simulation study demonstrates that the proposed weight-tuning algorithm is robust and less sensitive to noise compared to the standard backpropagation algorithm in identifying the robot inverse dynamics. Moreover, the simulation results also shows that the proposed NN learning control scheme can greatly reduce tracking errors as the iteration number increases.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"227 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper presents an iterative learning controller using neural network (NN) for the robot trajectory tracking control. The basic control configuration is briefly presented and a new weight-tuning algorithm of NN is proposed with a dead-zone technique. Theoretical proof is given which shows that our modified algorithm guarantees the convergence of NN estimation error in the presence of disturbance. The simulation study demonstrates that the proposed weight-tuning algorithm is robust and less sensitive to noise compared to the standard backpropagation algorithm in identifying the robot inverse dynamics. Moreover, the simulation results also shows that the proposed NN learning control scheme can greatly reduce tracking errors as the iteration number increases.
基于神经网络的可重复机器人轨迹跟踪学习控制方案
提出了一种基于神经网络的机器人轨迹跟踪迭代学习控制器。简要介绍了神经网络的基本控制结构,提出了一种新的基于死区技术的神经网络权值整定算法。理论证明了改进算法在存在干扰的情况下保证了神经网络估计误差的收敛性。仿真研究表明,与标准反向传播算法相比,该算法具有鲁棒性和较低的噪声敏感性。此外,仿真结果还表明,随着迭代次数的增加,所提出的神经网络学习控制方案可以大大降低跟踪误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信