Tagging Funding Agencies and Grants in Scientific Articles using Sequential Learning Models

S. Kayal, Z. Afzal, G. Tsatsaronis, S. Katrenko, Pascal Coupet, Marius A. Doornenbal, M. Gregory
{"title":"Tagging Funding Agencies and Grants in Scientific Articles using Sequential Learning Models","authors":"S. Kayal, Z. Afzal, G. Tsatsaronis, S. Katrenko, Pascal Coupet, Marius A. Doornenbal, M. Gregory","doi":"10.18653/v1/W17-2327","DOIUrl":null,"url":null,"abstract":"In this paper we present a solution for tagging funding bodies and grants in scientific articles using a combination of trained sequential learning models, namely conditional random fields (CRF), hidden markov models (HMM) and maximum entropy models (MaxEnt), on a benchmark set created in-house. We apply the trained models to address the BioASQ challenge 5c, which is a newly introduced task that aims to solve the problem of funding information extraction from scientific articles. Results in the dry-run data set of BioASQ task 5c show that the suggested approach can achieve a micro-recall of more than 85% in tagging both funding bodies and grants.","PeriodicalId":200974,"journal":{"name":"Workshop on Biomedical Natural Language Processing","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Biomedical Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-2327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present a solution for tagging funding bodies and grants in scientific articles using a combination of trained sequential learning models, namely conditional random fields (CRF), hidden markov models (HMM) and maximum entropy models (MaxEnt), on a benchmark set created in-house. We apply the trained models to address the BioASQ challenge 5c, which is a newly introduced task that aims to solve the problem of funding information extraction from scientific articles. Results in the dry-run data set of BioASQ task 5c show that the suggested approach can achieve a micro-recall of more than 85% in tagging both funding bodies and grants.
在科学文章中使用顺序学习模型标记资助机构和拨款
在本文中,我们提出了一个在科学文章中标记资助机构和拨款的解决方案,该解决方案使用经过训练的顺序学习模型的组合,即条件随机场(CRF),隐马尔可夫模型(HMM)和最大熵模型(MaxEnt),基于内部创建的基准集。我们将训练好的模型应用于解决BioASQ挑战5c,这是一个新引入的任务,旨在解决从科学文章中提取信息的资金问题。BioASQ任务5c的干运行数据集的结果表明,所建议的方法在标记资助机构和资助方面都可以实现85%以上的微召回。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信