Distributed linear parameter estimation in sensor networks: Convergence properties

S. Kar, J.M.F. Moura
{"title":"Distributed linear parameter estimation in sensor networks: Convergence properties","authors":"S. Kar, J.M.F. Moura","doi":"10.1109/ACSSC.2008.5074638","DOIUrl":null,"url":null,"abstract":"The paper considers the problem of distributed linear vector parameter estimation in sensor networks, when sensors can exchange quantized state information and the inter-sensor communication links fail randomly. We show that our algorithm LU leads to almost sure (a.s.) consensus of the local sensor estimates to the true parameter value, under the assumptions that, a minimal global observability criterion is satisfied and the network is connected in the mean, i.e., lambda2(Lmacr) Gt 0, where Lmacr is the expected Laplacian matrix. We show that the local sensor estimates are asymptotically normal and characterize the convergence rate of the algorithm in the framework of moderate deviations.","PeriodicalId":416114,"journal":{"name":"2008 42nd Asilomar Conference on Signals, Systems and Computers","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 42nd Asilomar Conference on Signals, Systems and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2008.5074638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

The paper considers the problem of distributed linear vector parameter estimation in sensor networks, when sensors can exchange quantized state information and the inter-sensor communication links fail randomly. We show that our algorithm LU leads to almost sure (a.s.) consensus of the local sensor estimates to the true parameter value, under the assumptions that, a minimal global observability criterion is satisfied and the network is connected in the mean, i.e., lambda2(Lmacr) Gt 0, where Lmacr is the expected Laplacian matrix. We show that the local sensor estimates are asymptotically normal and characterize the convergence rate of the algorithm in the framework of moderate deviations.
传感器网络中的分布式线性参数估计:收敛性
研究了传感器网络中存在量子化状态信息交换和传感器间通信链路随机故障的分布式线性矢量参数估计问题。我们证明了我们的算法LU导致局部传感器估计与真实参数值几乎肯定(as)一致,假设满足最小的全局可观察性准则并且网络在平均值中连接,即lambda2(Lmacr) Gt 0,其中Lmacr是期望的拉普拉斯矩阵。我们证明了局部传感器估计是渐近正态的,并在中等偏差的框架下表征了算法的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信