On Kolmogorov Complexity of Unitary Transformations in Quantum Computing

A. Kaltchenko
{"title":"On Kolmogorov Complexity of Unitary Transformations in Quantum Computing","authors":"A. Kaltchenko","doi":"10.26634/jmat.11.2.19190","DOIUrl":null,"url":null,"abstract":"We introduce a notion of Kolmogorov complexity of unitary transformation, which can (roughly) be understood as the least possible amount of information required to fully describe and reconstruct a given finite unitary transformation. In the context of quantum computing, it corresponds to the least possible amount of data to define and describe a quantum circuit or quantum computer program. Our Kolmogorov complexity of unitary transformation is built upon Kolmogorov \"qubit complexity\" of Berthiaume, W. Van Dam and S. Laplante via mapping from unitary transformations to unnormalized density operators, which are subsequently \"purified\" into unnormalized vectors in Hilbert space. We discuss the optimality of our notion of Kolmogorov complexity in a broad sense.","PeriodicalId":297202,"journal":{"name":"i-manager’s Journal on Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"i-manager’s Journal on Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26634/jmat.11.2.19190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce a notion of Kolmogorov complexity of unitary transformation, which can (roughly) be understood as the least possible amount of information required to fully describe and reconstruct a given finite unitary transformation. In the context of quantum computing, it corresponds to the least possible amount of data to define and describe a quantum circuit or quantum computer program. Our Kolmogorov complexity of unitary transformation is built upon Kolmogorov "qubit complexity" of Berthiaume, W. Van Dam and S. Laplante via mapping from unitary transformations to unnormalized density operators, which are subsequently "purified" into unnormalized vectors in Hilbert space. We discuss the optimality of our notion of Kolmogorov complexity in a broad sense.
论量子计算中酉变换的Kolmogorov复杂度
我们引入了酉变换的Kolmogorov复杂度的概念,它可以(粗略地)被理解为完全描述和重构给定的有限酉变换所需的最少信息量。在量子计算的背景下,它对应于尽可能少的数据量来定义和描述量子电路或量子计算机程序。我们的幺正变换的Kolmogorov复杂度是建立在Berthiaume, W. Van Dam和S. Laplante的Kolmogorov“量子比特复杂度”的基础上,通过将幺正变换映射到非规范化密度算子,然后将其“纯化”成Hilbert空间中的非规范化向量。我们从广义上讨论了Kolmogorov复杂性概念的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信