A Toolkit for Robust Risk Assessment Using F-Divergences

T. Kruse, Judith C. Schneider, Nikolaus Schweizer
{"title":"A Toolkit for Robust Risk Assessment Using F-Divergences","authors":"T. Kruse, Judith C. Schneider, Nikolaus Schweizer","doi":"10.2139/ssrn.3680475","DOIUrl":null,"url":null,"abstract":"This paper assembles a toolkit for the assessment of model risk when model uncertainty sets are defined in terms of an F-divergence ball around a reference model. We propose a new family of F-divergences that are easy to implement and flexible enough to imply convincing uncertainty sets for broad classes of reference models. We use our theoretical results to construct concrete examples of divergences that allow for significant amounts of uncertainty about lognormal or heavy-tailed Weibull reference models without implying that the worst case is necessarily infinitely bad. We implement our tools in an open-source software package and apply them to three risk management problems from operations management, insurance, and finance. This paper was accepted by Baris Ata, stochastic models and simulation.","PeriodicalId":106740,"journal":{"name":"ERN: Other Econometrics: Econometric Model Construction","volume":"226 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Econometrics: Econometric Model Construction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3680475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper assembles a toolkit for the assessment of model risk when model uncertainty sets are defined in terms of an F-divergence ball around a reference model. We propose a new family of F-divergences that are easy to implement and flexible enough to imply convincing uncertainty sets for broad classes of reference models. We use our theoretical results to construct concrete examples of divergences that allow for significant amounts of uncertainty about lognormal or heavy-tailed Weibull reference models without implying that the worst case is necessarily infinitely bad. We implement our tools in an open-source software package and apply them to three risk management problems from operations management, insurance, and finance. This paper was accepted by Baris Ata, stochastic models and simulation.
基于f -散度的稳健风险评估工具
当模型不确定性集以围绕参考模型的f散度球定义时,本文组装了一个用于评估模型风险的工具包。我们提出了一个新的f -散度族,它易于实现,并且足够灵活,可以为广泛的参考模型类暗示令人信服的不确定性集。我们使用我们的理论结果来构建发散的具体示例,这些示例允许对数正态或重尾威布尔参考模型的大量不确定性,而不意味着最坏的情况必然是无限坏的。我们在一个开源软件包中实现我们的工具,并将它们应用于运营管理、保险和财务方面的三个风险管理问题。论文被Baris Ata、随机模型和仿真所接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信