Flow and heat transfer analysis of variable diameter circular pillar disc brake rotor using CFD

C. Mahesh, A. Valavade
{"title":"Flow and heat transfer analysis of variable diameter circular pillar disc brake rotor using CFD","authors":"C. Mahesh, A. Valavade","doi":"10.1109/ICMAE.2016.7549525","DOIUrl":null,"url":null,"abstract":"In the present work, ventilated disc brake rotors with variable diameter circular pillar configurations were analyzed to enhance the heat dissipation and obtain more uniform temperature distribution in the rotor. CFD code used in this work was validated with experimental results obtained by conducting experiments on a test rig. Experimental analysis was performed on existing taper radial vane (TRV) rotor to calculate the mass flow rate and heat transfer coefficient. Further, variable diameter circular pillar (VDCP) rotor with different configurations namely VDCP1, VDCP2 and VDCP3 were considered for the analysis. A 20° segment of rotor was considered for the numerical analysis due to its rotational symmetry. CFD results were in good agreement with the experimental analysis. The maximum deviation of numerical results were about 15% from the experimental results. It is found from the analysis that among all the rotor configurations; VDCP1 rotor configuration gives better rate of heat dissipation and more uniform temperature distribution in the rotor. Hence for modern high speed vehicles VDCP1 rotor configuration may be more appropriate.","PeriodicalId":371629,"journal":{"name":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Mechanical and Aerospace Engineering (ICMAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMAE.2016.7549525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In the present work, ventilated disc brake rotors with variable diameter circular pillar configurations were analyzed to enhance the heat dissipation and obtain more uniform temperature distribution in the rotor. CFD code used in this work was validated with experimental results obtained by conducting experiments on a test rig. Experimental analysis was performed on existing taper radial vane (TRV) rotor to calculate the mass flow rate and heat transfer coefficient. Further, variable diameter circular pillar (VDCP) rotor with different configurations namely VDCP1, VDCP2 and VDCP3 were considered for the analysis. A 20° segment of rotor was considered for the numerical analysis due to its rotational symmetry. CFD results were in good agreement with the experimental analysis. The maximum deviation of numerical results were about 15% from the experimental results. It is found from the analysis that among all the rotor configurations; VDCP1 rotor configuration gives better rate of heat dissipation and more uniform temperature distribution in the rotor. Hence for modern high speed vehicles VDCP1 rotor configuration may be more appropriate.
基于CFD的变直径圆柱盘式制动器转子流动传热分析
本文对采用变直径圆柱结构的通风盘式制动器转子进行了分析,以提高散热性能,使转子内温度分布更加均匀。通过在试验台上的实验,验证了所使用的CFD代码的有效性。对现有的锥形径向叶片(TRV)转子进行了实验分析,计算了质量流量和换热系数。进一步考虑了VDCP1、VDCP2和VDCP3三种不同构型的变直径圆柱转子(VDCP)进行分析。考虑转子20°段的旋转对称性,对其进行数值分析。CFD计算结果与实验结果吻合较好。数值结果与实验结果的最大偏差约为15%。分析发现,在各种转子构型中;VDCP1转子配置具有更好的散热率和更均匀的转子温度分布。因此,对于现代高速车辆,VDCP1转子配置可能更合适。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信