ON MP TEST AND THE MVUEs IN A N (θ,cθ) DISTRIBUTION WITH θ UNKNOWN : ILLUSTRATIONS AND APPLICATIONS

D. Bhattacharjee, N. Mukhopadhyay
{"title":"ON MP TEST AND THE MVUEs IN A N (θ,cθ) DISTRIBUTION WITH θ UNKNOWN : ILLUSTRATIONS AND APPLICATIONS","authors":"D. Bhattacharjee, N. Mukhopadhyay","doi":"10.14490/JJSS.41.075","DOIUrl":null,"url":null,"abstract":"Consider a sequence of independent observations X1, . . . , Xn from a N(θ, cθ) distribution with 0 0) is known. We begin with the problem of testing H0 : θ = θ0 against H1 : θ = θ1 where θ0, θ1(θ0 = θ1) are specified values of θ. The most powerful (MP) level α test depends upon ∑n i=1 X 2 i , a complete and sufficient statistic for θ, which has a multiple of a non-central chi-square distribution with its non-centrality parameter involving n and the true parameter value θ under H0, H1. We first target type-I and type-II error probabilities α and β respectively, with α > 0, β > 0, α + β < 1. We set out to determine the required exact sample size which will control these error probabilities and provide two useful large-sample approximations for the sample size. The three methods provide nearly the same required sample size whether n is small, moderate or large. We also show how one may derive the minimum variance unbiased estimators (MVUEs) for a number of interesting and useful functionals of θ by combining some previous work from Mukhopadhyay and Cicconetti (2004) and Mukhopadhyay and Bhattacharjee (2010). All methodologies are illustrated with both simulated data and real data.","PeriodicalId":326924,"journal":{"name":"Journal of the Japan Statistical Society. Japanese issue","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Japan Statistical Society. Japanese issue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14490/JJSS.41.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Consider a sequence of independent observations X1, . . . , Xn from a N(θ, cθ) distribution with 0 0) is known. We begin with the problem of testing H0 : θ = θ0 against H1 : θ = θ1 where θ0, θ1(θ0 = θ1) are specified values of θ. The most powerful (MP) level α test depends upon ∑n i=1 X 2 i , a complete and sufficient statistic for θ, which has a multiple of a non-central chi-square distribution with its non-centrality parameter involving n and the true parameter value θ under H0, H1. We first target type-I and type-II error probabilities α and β respectively, with α > 0, β > 0, α + β < 1. We set out to determine the required exact sample size which will control these error probabilities and provide two useful large-sample approximations for the sample size. The three methods provide nearly the same required sample size whether n is small, moderate or large. We also show how one may derive the minimum variance unbiased estimators (MVUEs) for a number of interesting and useful functionals of θ by combining some previous work from Mukhopadhyay and Cicconetti (2004) and Mukhopadhyay and Bhattacharjee (2010). All methodologies are illustrated with both simulated data and real data.
关于MP检验和θ未知的N (θ,cθ)分布中的mvue:举例和应用
考虑一系列独立的观测X1,…,已知N(θ, cθ)分布的Xn(0)。我们从检验H0: θ = θ0对H1: θ = θ1的问题开始,其中θ0, θ1(θ0 = θ1)是θ的指定值。最强大的(MP)水平α检验依赖于∑n i=1 X 2 i,这是θ的完整和充分的统计量,它具有非中心卡方分布的倍数,其非中心性参数涉及n,并且在H0, H1下参数的真值θ。首先,我们分别以α > 0、β > 0、α + β < 1的ⅰ型和ⅱ型误差概率为目标。我们着手确定所需的精确样本量,这将控制这些误差概率,并为样本量提供两个有用的大样本近似值。无论n是小、中等还是大,这三种方法提供的所需样本量几乎相同。我们还展示了如何通过结合Mukhopadhyay和Cicconetti(2004)以及Mukhopadhyay和Bhattacharjee(2010)的一些先前的工作来推导出一些有趣和有用的θ函数的最小方差无偏估计(mvue)。所有方法都用模拟数据和实际数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信